
Caution: This document contains mixed page sizes (8.5 x 11 or 11 x 17), which may affect printing. Please adjust your printer settings according to the size of each page you wish to print.

Installation Manual

PowerCommand[®] Control 3200 Series Generator Sets

Printed in U.S.A. 960-0621C 5-2001

Table of Contents

SECTION	TITLE	PAGE
	IMPORTANT SAFETY INSTRUCTIONS	iii
1	INTRODUCTION	
	About this Manual	
2	SPECIFICATIONS	2-1
3	MOUNTING THE GENERATOR SET	
	General	
	Location	
	Mounting	
	Access to Set	
	Vibration Isolators	
4	MECHANICAL CONNECTIONS	
	General	4-1
	Fuel System	
	Exhaust System	4-4
	Ventilation and Cooling	
	Lubrication	4-8
	Fuel	4-8
	Coolant	4-9
5	DC CONTROL WIRING	
	Control Wiring	5-2 5-4

California Proposition 65 Warning

Diesel engine exhaust and some of its constituents are known to the State of California to cause cancer, birth defects, and other reproductive harm.

SECTION	TITLE	PAGE
6	AC ELECTRICAL CONNECTIONS	
	General Transfer Switch AC Wiring Control Heater (Optional) Coolant Heater Generator Heater	
7	PRESTART PREPARATION	
	General Ventilation Electrical System Control Prestart Checks Starting	7-1 7-1 7-2
8	INSTALLATION CHECKLIST General Generator Set Support Cooling Air Flow Diesel Fuel System Exhaust System AC and DC Wiring Generator Set Prestart	
9	WIRING DIAGRAMS	
	Customer Connections	9-1/9-2

IMPORTANT SAFETY INSTRUCTIONS

SAVE THESE INSTRUCTIONS – This manual contains important instructions that should be followed during installation and maintenance of the generator and batteries.

Before operating the generator set (genset), read the Operator's Manual and become familiar with it and the equipment. Safe and efficient operation can be achieved only if the equipment is properly operated and maintained. Many accidents are caused by failure to follow fundamental rules and precautions.

The following symbols, found throughout this manual, alert you to potentially dangerous conditions to the operator, service personnel, or the equipment.

A DANGER This symbol warns of immediate hazards which will result in severe personal injury or death.

<u>AWARNING</u> This symbol refers to a hazard or unsafe practice which can result in severe personal injury or death.

A CAUTION This symbol refers to a hazard or unsafe practice which can result in personal injury or product or property damage.

FUEL AND FUMES ARE FLAMMABLE

Fire, explosion, and personal injury or death can result from improper practices.

- DO NOT fill fuel tanks while engine is running, unless tanks are outside the engine compartment.
 Fuel contact with hot engine or exhaust is a potential fire hazard.
- DO NOT permit any flame, cigarette, pilot light, spark, arcing equipment, or other ignition source near the generator set or fuel tank.
- Fuel lines must be adequately secured and free of leaks. Fuel connection at the engine should be made with an approved flexible line. Do not use zinc coated or copper fuel lines with diesel fuel.
- Be sure all fuel supplies have a positive shutoff valve.
- Be sure battery area has been well-ventilated prior to servicing near it. Lead-acid batteries emit a highly explosive hydrogen gas that can be ignited by arcing, sparking, smoking, etc.

EXHAUST GASES ARE DEADLY

- Provide an adequate exhaust system to properly expel discharged gases away from enclosed or sheltered areas and areas where individuals are likely to congregate. Visually and audibly inspect the exhaust daily for leaks per the maintenance schedule. Make sure that exhaust manifolds are secured and not warped. Do not use exhaust gases to heat a compartment.
- Be sure the unit is well ventilated.
- Engine exhaust and some of its constituents are known to the state of California to cause cancer, birth defects, and other reproductive harm.

MOVING PARTS CAN CAUSE SEVERE PERSONAL INJURY OR DEATH

- Keep your hands, clothing, and jewelry away from moving parts.
- Before starting work on the generator set, disconnect battery charger from its AC source, then disconnect starting batteries, negative (–) cable first. This will prevent accidental starting.
- Make sure that fasteners on the generator set are secure. Tighten supports and clamps, keep guards in position over fans, drive belts, etc.
- Do not wear loose clothing or jewelry in the vicinity of moving parts, or while working on electrical equipment. Loose clothing and jewelry can become caught in moving parts.
- If adjustment must be made while the unit is running, use extreme caution around hot manifolds, moving parts, etc.

DO NOT OPERATE IN FLAMMABLE AND EXPLOSIVE ENVIRONMENTS

Flammable vapor can cause an engine to overspeed and become difficult to stop, resulting in possible fire, explosion, severe personal injury and death. Do not operate a genset where a flammable vapor environment can be created by fuel spill, leak, etc., unless the genset is equipped with an automatic safety device to block the air intake and stop the engine. The owners and operators of the genset are solely responsible for operating the genset safely. Contact your authorized Onan/Cummins dealer or distributor for more information.

ELECTRICAL SHOCK CAN CAUSE SEVERE PERSONAL INJURY OR DEATH

- Remove electric power before removing protective shields or touching electrical equipment. Use rubber insulative mats placed on dry wood platforms over floors that are metal or concrete when around electrical equipment. Do not wear damp clothing (particularly wet shoes) or allow skin surface to be damp when handling electrical equipment. Do not wear jewelry. Jewelry can short out electrical contacts and cause shock or burning.
- Use extreme caution when working on electrical components. High voltages can cause injury or death. DO NOT tamper with interlocks.
- Follow all applicable state and local electrical codes. Have all electrical installations performed by a qualified licensed electrician. Tag and lock open switches to avoid accidental closure.
- DO NOT CONNECT GENERATOR SET DIRECT-LY TO ANY BUILDING ELECTRICAL SYSTEM. Hazardous voltages can flow from the generator set into the utility line. This creates a potential for electrocution or property damage. Connect only through an approved isolation switch or an approved paralleling device.

GENERAL SAFETY PRECAUTIONS

- Coolants under pressure have a higher boiling point than water. DO NOT open a radiator or heat exchanger pressure cap while the engine is running. Allow the generator set to cool and bleed the system pressure first.
- Used engine oils have been identified by some state or federal agencies as causing cancer or reproductive toxicity. When checking or changing engine oil, take care not to ingest, breathe the fumes, or contact used oil.

- Keep multi-class ABC fire extinguishers handy.
 Class A fires involve ordinary combustible materials such as wood and cloth; Class B fires, combustible and flammable liquid fuels and gaseous fuels; Class C fires, live electrical equipment. (ref. NFPA No. 10).
- Make sure that rags are not left on or near the engine.
- Make sure generator set is mounted in a manner to prevent combustible materials from accumulating under the unit.
- Remove all unnecessary grease and oil from the unit. Accumulated grease and oil can cause overheating and engine damage which present a potential fire hazard.
- Keep the generator set and the surrounding area clean and free from obstructions. Remove any debris from the set and keep the floor clean and dry.
- Do not work on this equipment when mentally or physically fatigued, or after consuming any alcohol or drug that makes the operation of equipment unsafe.
- Substances in exhaust gases have been identified by some state or federal agencies as causing cancer or reproductive toxicity. Take care not to breath or ingest or come into contact with exhaust gases.
- Do not store any flammable liquids, such as fuel, cleaners, oil, etc., near the generator set. A fire or explosion could result.
- Wear hearing protection when going near an operating generator set.
- To prevent serious burns, avoid contact with hot metal parts such as radiator, turbo charger and exhaust system.

KEEP THIS MANUAL NEAR THE GENSET FOR EASY REFERENCE

1. Introduction

ABOUT THIS MANUAL

This manual covers models produced under the Cummins®/Onan® and Cummins Power Generation brand names.

This manual provides installation instructions for the generator set models listed on the front cover. This includes the following information:

Mounting Recommendations - for fastening generator set to base and space requirements for normal operation and service.

Mechanical Connections Electrical Connections - covers most aspects of the generator set installation.

Prestart – checklist of items or procedures needed to prepare generator set for operation.

Initial Startup – test complete system to ensure proper installation, satisfactory performance, and safe operation. Refer to Operators Manual for troubleshooting information.

Installation Checklist – reference checks upon completion of installation.

This manual DOES NOT provide application information for selecting a generator set or designing the complete installation. If it is necessary to design the various integrated systems (fuel, exhaust, cooling, etc.), additional information is required. Review standard installation practices. For engineering data specific to the generator set, refer to the *Specification* and *Data Sheets*. For application information, refer to Application Manual T-030, "Liquid Cooled Generator Sets".

INSTALLATION OVERVIEW

These installation recommendations apply to typical installations with standard model generator sets. Whenever possible, these recommendations also cover factory designed options or modifications. However, because of the many variables in any installation, it is not possible to provide specific recommendations for every situation. If there are any questions not answered by this manual, contact your nearest Cummins Power Generation distributor for assistance.

Application and Installation

A standby power system must be carefully planned and correctly installed for proper operation. This involves two essential elements: application and installation.

Application (as it applies to generator set installations) refers to the design of the complete standby power system that usually includes power distribution equipment, transfer switches, ventilation equipment, mounting pads, and cooling, exhaust, and fuel systems. Each component must be correctly designed so the complete system will function as intended. Application and design is an engineering function generally done by specifying engineers or other trained specialists. Specifying engineers are responsible for the design of the complete standby

system and for selecting the materials and products required.

Installation refers to the actual set—up and assembly of the standby power system. The installers set up and connect the various components of the system as specified in the system design plan. The complexity of the standby system normally requires the special skills of qualified electricians, plumbers, sheetmetal workers, etc. to complete the various segments of the installation. This is necessary so all components are assembled using standard methods and practices.

Safety Considerations

The generator set has been carefully designed to provide safe and efficient service when properly installed, maintained, and operated. However, the overall safety and reliability of the complete system is dependent on many factors outside the control of the generator set manufacturer. To avoid possible safety hazards, make all mechanical and electrical connections to the generator set exactly as specified in this manual. All systems external to the generator (fuel, exhaust, electrical, etc.) must comply with all applicable codes. Make certain all required inspections and tests have been completed and all code requirements have been satisfied before certifying the installation is complete and ready for service.

2. Specifications

MODEL	DFEG, DFEH, DFEJ, DFEK		
Cummins Diesel Series	QSX15 (50/60 Hz)		
Generator Kw Rating	See Genset Nameplate for rating information.		
Cooling System (Capacity Std. Raidiator) – Gal (L)	15.3 (58)		
Lubricating System Oil Cap. w/Filters Oil Type*	26 Gallons (58 L)		
Engine Fuel Connection Inlet/Outlet Thread Size	Refer to Generator Outline Drawing		
Fuel Flow Max. Fuel Inlet Pressure Max. Fuel Inlet Restriction Max. Fuel Return Restriction	10 PSI (69 kPa) 5 in. Hg. (16.9 kPa) 3.05 in. Hg. (10.3 kPa)		
Exhaust Outlet Size Maximum Allowable Back Pres. H ₂ 0 kPa Hg	6" NPT Male STD. (A299)/ASA Flange (A355) or Slip-on (A298) Optional 27 in (686 mm) 6.8 2.0 in (51 mm)		
Electrical System Starting Voltage Battery Group number CCA (minimum) Cold Soak @ 0° F (-18° C)	24 Volts DC Two, 12 Volt 8D 1400 ine Operation and Maintenance Manual for Jubricating oil		

Refer to Cummins QSX15 Series Engine Operation and Maintenance Manual for lubricating oil recommendations/specifications.

FUEL CONSUMPTION (STANDBY/FULL LOAD/60HZ)

MODEL	DFEG	DFEH	DFEJ	DFEK
US gph (L/hr)	24.6 (93.2)	27.1 (102.7)	30 (113.7)	34.8 (131.9)

THIS PAGE LEFT INTENTIONALLY BLANK

3. Mounting the Generator Set

GENERAL

Generator set installations must be engineered so the generator set will function properly under the expected load conditions. Use these instructions as a general guide only. Follow the instructions of the consulting engineer when locating or installing any components. The complete installation must comply with all local and state building codes, fire ordinances, and other applicable regulations.

Requirements to be considered prior to installation:

- Level mounting surface
- · Adequate cooling air
- Adequate fresh induction air
- Discharge of generator set air
- Discharge of exhaust gases

- Non-combustible mounting surface.
- Electrical connections
- Accessibility for operation and servicing
- Noise levels
- Vibration isolation

LOCATION

Generator set location is decided mainly by related systems such as ventilation, wiring, fuel, and exhaust. The set should be located as near as possible to the main power breaker box. Exhaust must not be able to enter or accumulate around inhabited areas.

Provide a location away from extreme ambient temperatures and protect the generator set from adverse weather conditions.

▲WARNING

INCORRECT INSTALLATION, SERVICE OR PARTS REPLACEMENT CAN RESULT IN SEVERE PERSONAL INJURY, DEATH, AND/OR EQUIPMENT DAMAGE. SERVICE PERSONNEL MUST BE TRAINED AND EXPERIENCED TO PERFORM ELECTRICAL AND MECHANICAL COMPONENT INSTALLATION.

IMPORTANT

DEPENDING ON YOUR LOCATION AND INTENDED USE, FEDERAL, STATE OR LOCAL LAWS AND REGULATIONS MAY REQUIRE YOU TO OBTAIN AN AIR QUALITY EMISSIONS PERMIT BEFORE BEGINNING INSTALLATION OF YOUR GENSET. BE SURE TO CONSULT LOCAL POLLUTION CONTROL OR AIR QUALITY AUTHORITIES BEFORE COMPLETING YOUR CONSTRUCTION PLANS.

MOVING

AWARNING Generator set weight can cause severe personal injury or death. Use extreme caution when lifting, hoisting, or moving the generator set. Make certain to use a hoist or other lifting device whose capacity is rated well above the weight of the generator set. The generator sets models listed on the front cover of this manual can weigh 9800 pounds (4445 kgs) (refer to Specification Sheet for Model weight). Make certain that the maximum lifting capacity of the hoist exceeds the weight of the generator set by a large margin. Follow the manufacturer's instructions carefully regarding the weight capacity of the hoist and the recommended hoisting procedure.

When lifting, hoisting, or moving the generator set, use only the lifting eyes (optional) or skid lifting holes as shown in Figure 3-1. **Do not attach lifting device to brackets on engine or generator.** These brackets are only used and designed for the removal of the engine or the generator from the generator set.

AWARNING Improper genset lifting can cause severe personal injury or death. Do not use engine or generator lift brackets to move or hoist the generator set. Brackets are designed for weight of engine or generator only. When moving or lifting genset, use skid eye brackets/holes.

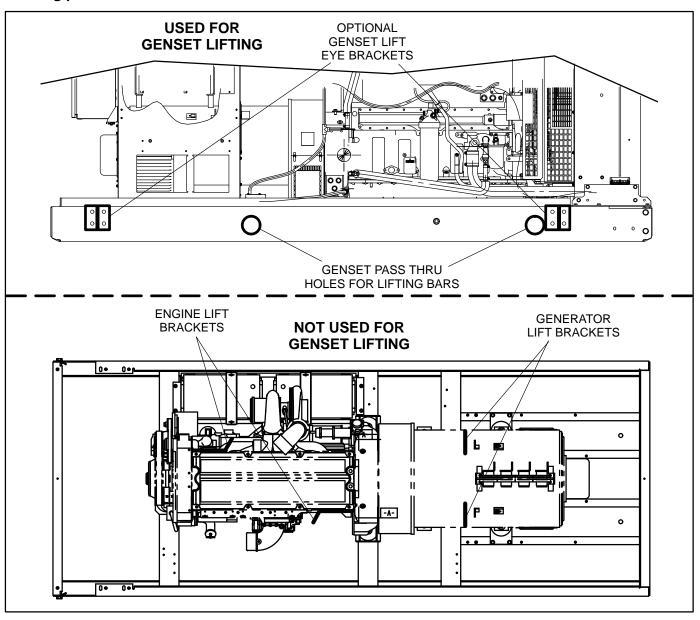


FIGURE 3-1. GENERATOR SET LIFTING/HOISTING/MOVING LOCATIONS

MOUNTING

Generator sets are mounted on a steel skid that provides proper support. The engine-generator assembly is isolated from the skid frame by rubber mounts that provide adequate vibration isolation for normal installations. Where required by building codes or special isolation needs, generator sets may be mounted on rubber pads or mechanical spring isolators. The use of unapproved isolators may result in harmful resonances and may void the genset warranty.

Mount the generator set on a substantial and level base such as a concrete pad. A non-combustible material must be used for the pad.

Use 5/8 inch or 16 mm anchored mounting bolts to secure the vibration isolators to the base. Secure the vibration isolators to the skid using flat or bevel washer and hexagonal nut for each bolt (see Figure 3-1). The $1-1/2 \times 6$ inch pipe inserted over the mounting bolts allows minor adjustment of the bolts to align them to the holes in the subbase or vibration isolator.

Locate the isolators as shown on the generator set *Outline Drawing* referenced in the *Data Sheet*.

ACCESS TO SET

Generally, at least 1 meter (3 feet) of clearance should be provided on all sides of the generator set for maintenance and service access. A raised foundation or slab of 150 mm (6 inches) or more above floor level will make servicing easier.

Lighting should be adequate for operation, maintenance and service operations and should be connected on the load side of the transfer switch so that it is available at all times.

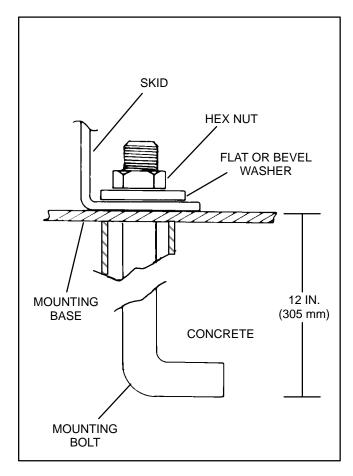


FIGURE 3-2. BOLT DIAGRAM

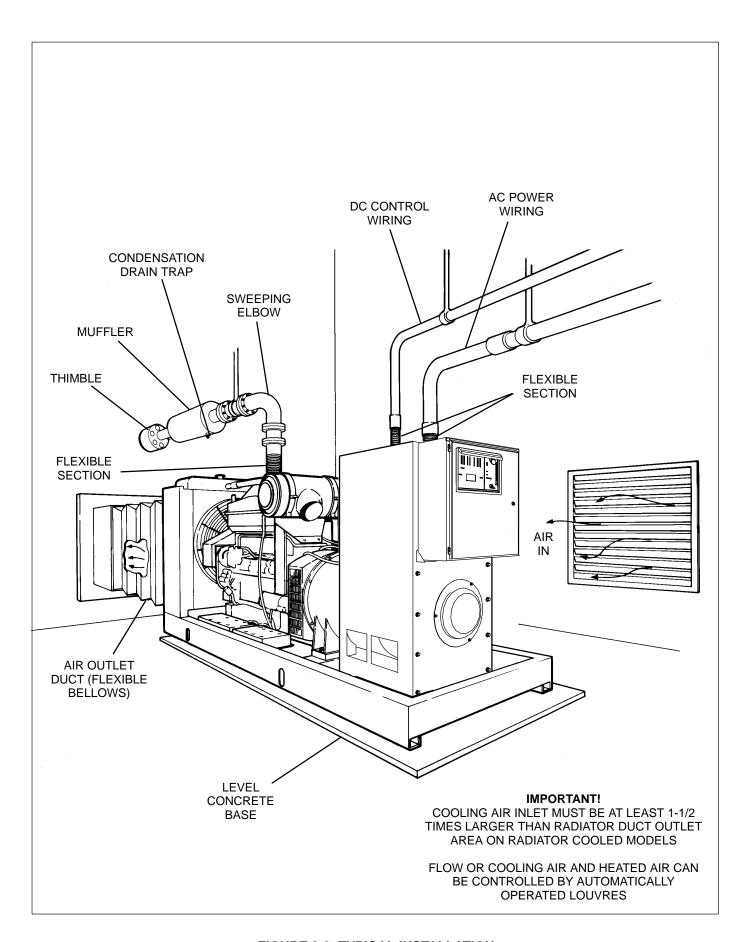


FIGURE 3-3. TYPICAL INSTALLATION

VIBRATION ISOLATORS

Installation and Adjustment Procedure

- Place the vibration isolators (Figure 3-4) on the genset support structure. The isolators should be shimmed or grouted to ensure that all of the isolator bases are within 0.25 inch (6 mm) elevation of each other. The surface that the isolator bases rest on must also be flat and level
- Loosen the side snubber lock nuts so that the top plate of the isolator is free to move vertically and horizontally. Be sure that the top plate is correctly aligned with the base and springs.
- Place the genset onto the isolators while aligning the skid's mounting with the threaded isolator hole. The top plates will move down and approach the base of the isolator as load is applied.
- 4. Once the genset is in position, the isolators may require adjusting so that the set is level.

The isolators are adjusted by inserting the leveling bolt through the skid and into the isolator (the leveling bolt's locking nut should be threaded up towards the bolt head).

The leveling bolt will adjust the clearance between the top plate and the isolator base. A nominal clearance of 0.25 inch (6 mm) or greater is desired. This will provide sufficient clearance for the rocking that occurs during startup and shutdown. If the 0.25 inch (6 mm) clearance is not present, turn the leveling bolt until the desired clearance is achieved.

- 5. The genset may not be level yet; therefore, adjust the leveling bolts until the set is level and sufficient clearance still remains. (Clearance on all isolators should be roughly equal). Once all isolators have been set, lock the leveling bolt in place with the lock nut.
- The snubber nuts must remain loose and therefore provide better isolation between the genset and support structure.

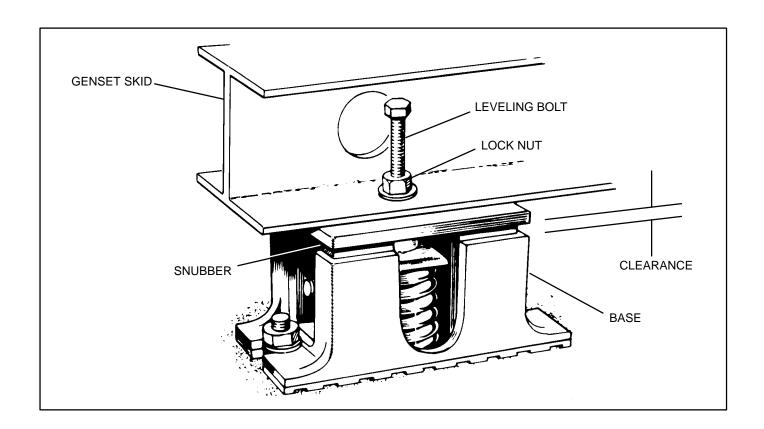


FIGURE 3-4. VIBRATION ISOLATORS

THIS PAGE LEFT INTENTIONALLY BLANK

4. Mechanical Connections

GENERAL

The generator set mechanical system installation includes connecting the fuel, exhaust, ventilation and cooling systems. Before starting any type of fuel installation, all pertinent state and local codes must be complied with and the installation must be inspected before the unit is put in service.

FUEL SYSTEM

Cummins engines normally use ASTM No. 2 diesel fuel. They will, however, operate on alternate diesel fuels within the specifications shown in the Cummins engine *Operation and Maintenance Manual*.

In all fuel system installations, cleanliness is of the upmost importance. Make every effort to prevent entrance of moisture, dirt or contaminants of any kind into the fuel system. Clean all fuel system components before installing.

A fuel filter/strainer/water separator of 100-120 mesh or equivalent (approximately 150 microns nominal) must be fitted between either the main tank and day tank or between the main tank and the engine.

Use only compatible metal fuel lines to avoid electrolysis when fuel lines must be buried. Buried fuel lines must be protected from corrosion.

ACAUTION Never use galvanized or copper fuel lines, fittings or fuel tanks. Condensation in the tank and lines combines with the sulfur in diesel fuel to produce sulfuric acid. The molecular structure of the copper or galvanized lines or tanks reacts with the acid and contaminates the fuel.

An electric solenoid valve in the supply line is recommended for all installations and required for indoor automatic or remote starting installations. Connect the solenoid wires to TB3-5 and TB3-6 (see Customer Connections, Section 9) which provide switched B+ that opens the valve during genset operation and closes the valve 10 seconds after a stop signal is received. This 10 second delay keeps the fuel line open during genset shutdown (normal or warning) sequence. If the valve is allowed to close before the engine stops, hard starts and possible damage to the engine can occur.

ACAUTION Hard starts or engine damage will occur if fuel supply solenoid is not connected to the Delayed Switched B+ circuit. Fuel supply line must remain open until engine has completely stopped.

Separate fuel return lines to the day tank or supply tank must be provided for each generator set in a multiple-set installation to prevent the return lines of idle sets from being pressurized. Fuel return lines must not contain a shutoff device. Engine damage will occur if the engine is run with the return fuel lines blocked or restricted.

ACAUTION Never install shutoff device in fuel return line(s). If fuel return line(s) is blocked or exceeds fuel restriction limit, engine damage will occur.

Fuel Return Restriction (or Pressure) Limit: Fuel return drain restriction (consisting of friction head and static head) between the engine injector return line connection and the fuel tank must not exceed the limit stated in the *Specification* section.

Fuel Lines – Routing

A flexible fuel hose(s) or section of flexible fuel hose(s) must be used between the engine's fuel system and fuel supply and return line(s) to protect the fuel system from damage caused by vibration, expansion and contraction. Flexible lines for connecting between the engine and the stationary fuel lines are supplied as standard equipment.

Installation of the fuel hose must be done according to all applicable codes and standards, and installation recommendations provided by the manufacturer. The supplied flexible hose is approved by the hose manufacture for use with the genset fuel type and product application.

Supply Tank

Locate the fuel tank as close as possible to the generator set and within the restriction limitations of the fuel pump.

Install a fuel tank that has sufficient capacity to supply the genset operating continuously at full rated load for the planned period of operation or power outage. Refer to *Data Sheet* for fuel consumption data.

AWARNING Fuel leaks create fire and explosion hazards which can result in severe personal injury or death. Always use flexible tubing between engine and fuel supply to avoid line failure and leaks due to vibration. The fuel system must meet applicable codes.

If the fuel inlet restriction exceeds the defined limit due to the distance/customer-supplied plumbing between the genset and the main fuel tank, a transSupport fuel lines to restrain movement and prevent chaffing or contact with sharp edges, electrical wiring and hot exhaust parts.

AWARNING Sparks and hot surfaces can ignite fuel, leading to severe personal injury or death. Do not route fuel lines near electrical wiring or hot exhaust parts.

Fuel lines must be routed and secured to maintain a 1/2 inch (12.7 mm) minimum clearance from electrical wiring and a 2 inch (51 mm) minimum clearance from hot exhaust parts.

Engine Fuel Connections

Identification tags are attached to the fuel supply line and fuel return line connections.

fer tank (referred to as a day tank) and auxiliary pump will also be required. If an overhead main fuel tank is installed, a transfer tank and float valve will be required to prevent fuel head pressures from being placed on the fuel system components.

For critical start applications, where generator sets are paralleled or must satisfy emergency start-time requirements, it is recommended that a fuel tank or reservoir be located such that the lowest possible fuel level is not less than 6 inches (150 mm) above the fuel pump inlet. This will prevent air from accumulating in the fuel line while the set is in standby, eliminating the period during startup when it has to be purged.

Fuel Inlet Pressure/Restriction Limit:: Engine performance and fuel system durability will be compromised if the fuel inlet pressure or restriction limits are not adhered to. Fuel inlet pressure or restriction must not exceed the limits stated in the *Specification* section.

Day Tank (If Used)

Fuel day tanks are used when fuel inlet restriction limits can not be met, or the supply tank is overhead and presents problems of high fuel head pressure for the fuel inlet and return lines.

Supply Tank Lower Than Engine: With this installation, the day tank is installed near the generator set, below the fuel injection system and within the fuel inlet restriction limit. Install an auxiliary fuel pump, to pump fuel from the supply tank to the day tank. A float switch in the day tank controls operation of the auxiliary fuel pump.

The supply tank top must be below the day tank top to prevent siphoning from the fuel supply to the day tank.

Provide a return line from the engine injection system return connection to the day tank. Plumb the re-

turn line to the bottom of day tank as shown in Figure 4-1. Provide a day tank overflow line to the supply tank in case the float switch fails to shut off the fuel transfer pump.

AWARNING Spilled fuel presents the hazard of fire or explosion which can result in severe personal injury or death. Provide an overflow line to the supply tank from the day tank.

Supply Tank Higher Than Engine: Install the day tank near the generator set, but below the fuel injection system. Use fuel line at least as large as the fuel pump inlet. The engine fuel return line must enter the day tank.

Include a shutoff valve in the fuel line between the fuel supply tank and the day tank to stop fuel flow when the generator set is off.

<u>AWARNING</u> Spilled fuel can create environmental hazards. Check local requirements for containment and prevention of draining to sewer and ground water.

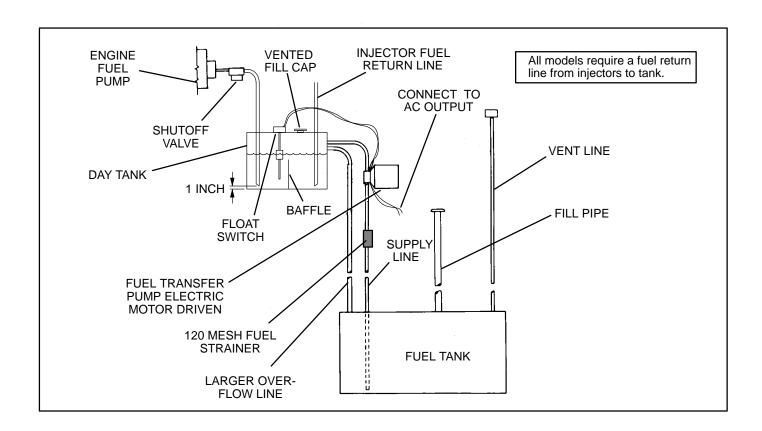


FIGURE 4-1. TYPICAL FUEL SUPPLY INSTALLATION

EXHAUST SYSTEM

Pipe exhaust gases to the outside of any enclosure. Locate the exhaust outlets away from any air inlets to avoid gases re-entering the enclosure. Exhaust installations are subject to various detrimental conditions such as extreme heat, infrequent operation and light loads. Regularly inspect the exhaust system both visually and audibly to see that the entire system remains fume tight and safe for operation.

AWARNING Inhalation of exhaust gases can result in severe personal injury or death. Use extreme care during installation to provide a tight exhaust system. Terminate exhaust pipe away from enclosed or sheltered areas, windows, doors and vents.

For indoor installation, the exhaust system must use sealed joint type fittings, (for example NPT fittings) to provide a tighter exhaust system. Use of slip type fittings (secured with a muffler clamp) may allow leakage of exhaust gases into the building.

AWARNING Inhalation of exhaust gases can result in severe personal injury or death. Use extreme care during installation to provide a tight exhaust system. Use NPT or equivalent type fittings for all indoor installations.

Use an approved thimble (Figure 4-2) where exhaust pipes pass through wall or partitions. Insulated wall/roof thimbles are used where exhaust pipes pass through a combustible roof or wall. This includes structures, such as wood framing or insulated steel decking, etc. Uninsulated wall/roof thimbles are used where exhaust pipes pass through a non-combustible wall or roof, such as concrete. Refer to NFPA 37, Section 6-3. "Stationary Combustion Engines and Gas Turbines" for ac-

cepted design practices. Build according to the code requirements in effect at the installation site.

AWARNING Hot exhaust pipes can start a fire and cause severe injury or death if improperly routed through walls. Use an approved thimble where exhaust pipes pass through walls or partitions.

AWARNING Inhalation of exhaust gases can result in severe personal injury or death. Do not use exhaust heat to warm a room, compartment or storage area.

Rain caps are available for the discharge end of vertical exhaust pipes. The rain cap clamps onto the end of the pipe and opens due to exhaust discharge force from the generator set. When the generator set is stopped, the rain cap automatically closes, protecting the exhaust system from rain, snow, etc.

Use a section of flexible exhaust pipe between the engine and remainder of exhaust system. Support exhaust system to prevent weight from being applied to engine exhaust outlet elbow/turbocharger connection.

A CAUTION Weight applied to the engine manifold can result in turbocharger damage. Support the muffler and exhaust piping so no weight or stress is applied to engine exhaust elbow.

The exhaust system design should meet local code requirements.

Liability for injury, death, damage, and warranty expense due to use of unapproved mufflers or modifications becomes the responsibility of the person installing the unapproved muffler or performing the modification. Contact a Cummins Power Generation distributor for approved exhaust system parts.

Avoid sharp bends by using sweeping, long radius elbows and provide adequate support for muffler and tailpipe. Pitch a horizontal run of exhaust pipe DOWNWARD (away from engine) to allow any moisture condensation to drain away from the engine. If an exhaust pipe must be turned upward, install a condensation trap at the point where the rise begins (Figure 4-3).

Shield or insulate exhaust lines if there is danger of personal contact. Allow at least 12 inches (305 mm) of clearance if the pipes pass close to a combustible wall or partition. Before installing insulation on exhaust system components, check the exhaust system for leaks while operating the genset under full load and correct all leaks.

AWARNING Exhaust pipes are very hot and they can cause severe personal injury or death from direct contact or from fire hazard. Shield or insulate exhaust pipes if there is danger of personal contact or when routed through walls or near other combustible materials.

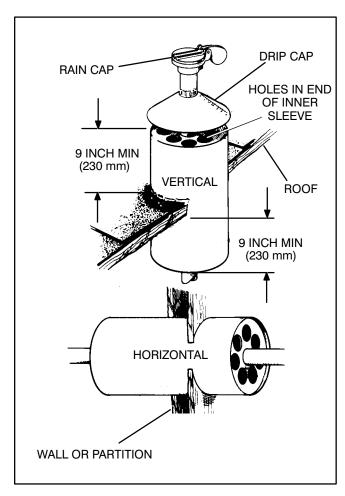
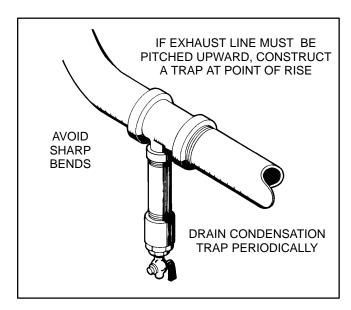



FIGURE 4-2. MOUNTING EXHAUST THIMBLE

FIGURE 4-3. CONDENSATION TRAP

VENTILATION AND COOLING

Generator sets create considerable heat that must be removed by proper ventilation. Outdoor installations normally rely on natural air circulation but indoor installations need properly sized and positioned vents for required airflow.

Vents and Ducts

For indoor installations, locate vents so incoming air passes through the immediate area of the installation before exhausting. Install the air outlet higher than the air inlet to allow for convection air movement.

Size the vents and ducts so they are large enough to allow the required flow rate of air. The "free area" of ducts must be as large as the exposed area of the radiator. Refer to the genset *Data Sheet* for the airflow requirements and allowed airflow restriction.

Wind will restrict free airflow if it blows directly into the air outlet vent. Locate the outlet vent so the effects of wind are eliminated. See Figure 4-4.

Dampers

Dampers or louvres protect the genset and equipment room from the outside environment. Their operation of opening and closing should be controlled by operation of the genset.

In cooler climates movable or discharge dampers are used. These dampers allow the air to be recirculated back to the equipment room. This enables the equipment room to be heated while the genset engine is still cold, increasing the engine efficiency.

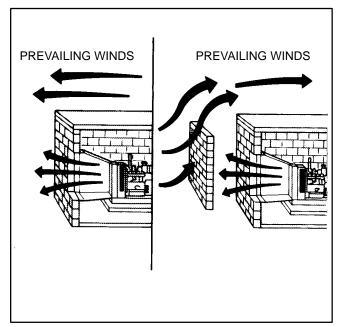


FIGURE 4-4. WIND BARRIER

Radiator Set Requirements

Radiator set cooling air is drawn past the control end of the set by a pusher fan that blows air through the radiator (Figure 4-5). Locate the air inlet to the to the rear of the set. Make the inlet vent opening 1-1/2 to 2 times larger than the radiator area.

Louvers and screens over air inlet and outlet openings restrict air flow and vary widely in performance. A louver assembly with narrow vanes, for example, tends to be more restrictive than one with wide vanes. The effective open area specified by the louver or screen manufacturer should be used.

Locate the cooling air outlet directly in front of the radiator and as close as possible. The outlet opening must be at least as large as the radiator area. Length and shape of the air outlet duct should offer minimum restriction to airflow.

Attach a canvas or sheet metal duct to the flange and the air outlet opening using screws and nuts so duct can be removed for maintenance purposes. The duct prevents circulation of heated air. Before installing the duct, remove the radiator core guard.

Coolant Heater (Optional)

An optional coolant heater can be installed to keep the engine warm for starting under adverse weather conditions. Connect the heater to a power source that will be on when the engine is NOT running.

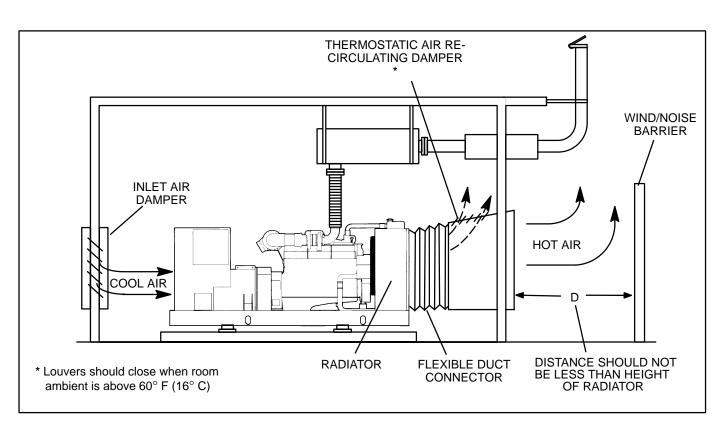


FIGURE 4-5. TYPICAL RADIATOR SET INSTALLATION

LUBRICATION

Before starting, check the engine oil level. Gensets are shipped with oil. Fill if needed using the recommended oil. Refer to the Cummins *QSX15 Series Engines Operation and Maintenance Manual* for the recommended oil.

FUEL

Fill the fuel tanks with the recommended fuel. Open all manual shutoff valves. Engine fuel may not be primed at the fuel filters after shipment. To check and reprime the fuel system, refer to the Cummins QSX15 Series Engines Operation and Maintenance Manual for the recommended procedure.

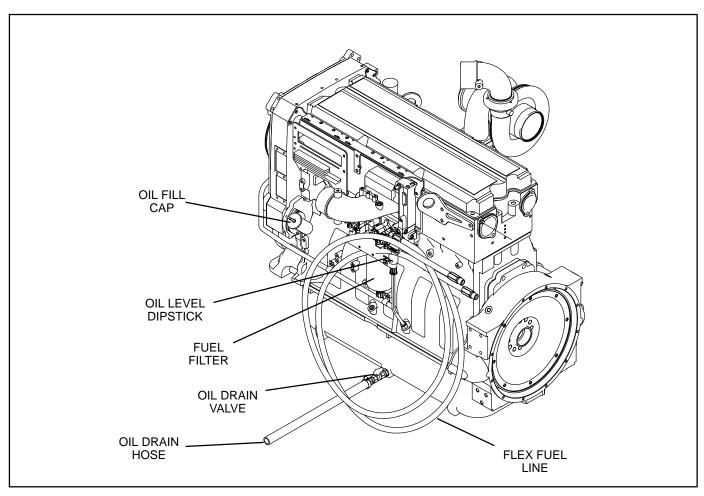


FIGURE 4-6. LUBRICATION AND FUEL COMPONENTS

COOLANT

Before starting, check the engine coolant level. Gensets are shipped with coolant. Fill the cooling system with the recommended coolant. Refer to the Cummins *QSX15 Series Engines Operation and Maintenance Manual* for the recommended coolant.

Coolant Filters

A spin-on type corrosion filter (Figure 4-7) is stan-

dard equipment. An on/off valve is provided to prevent coolant leakage while changing the coolant filter. With the valve in the **ON** position, the coolant flows through the filter. In the **OFF** position, the coolant does not flow through the filter.

Make sure coolant shut off valve is in the **ON** position before operating the generator set.

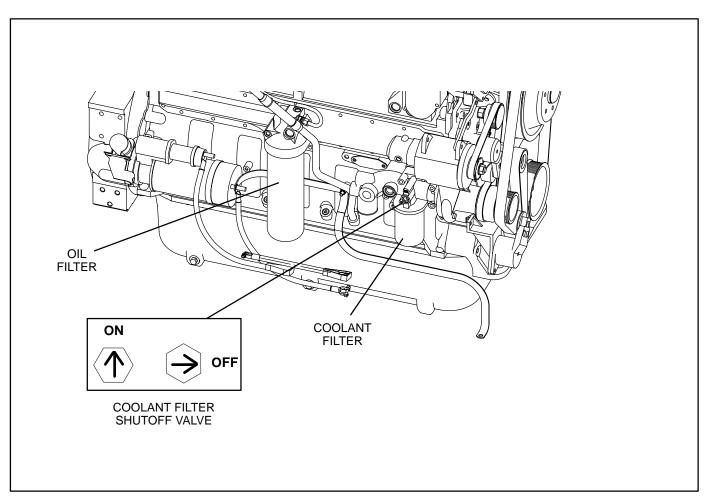


FIGURE 4-7. COOLANT AND LUBRICATION COMPONENTS

THIS PAGE LEFT INTENTIONALLY BLANK

5. DC Control Wiring

CONTROL WIRING

The generator set control box assembly (Figure 5-1), which is located on the rear or optionally on either side of the control housing, contains connection points for remote control and monitor options.

ACAUTION Do not attach conduit to the control box assembly for any reason. All conduit must be attached to the control housing. Attaching conduit to the control box assembly will compress the control box vibration isolators, causing the box to vibrate and damage the electronic circuitry.

Use flexible conduit for all wiring connections to the generator set. All conduit used for control wiring

must be attached to the control housing, not to the control box assembly. Route the control wiring through the control housing and into the access hole on the back panel of the control box assembly (Figure 5-2). Use cable ties to keep control wiring away from sharp edges and AC power cables within control housing.

After completing all customer connections (wires routed and secured), heat shrink the boot that is located on backside of access hole, until sealed.

A CAUTION Stranded copper wire must be used for all customer connections to the electronics box. Solid copper wire may break due to genset vibration.

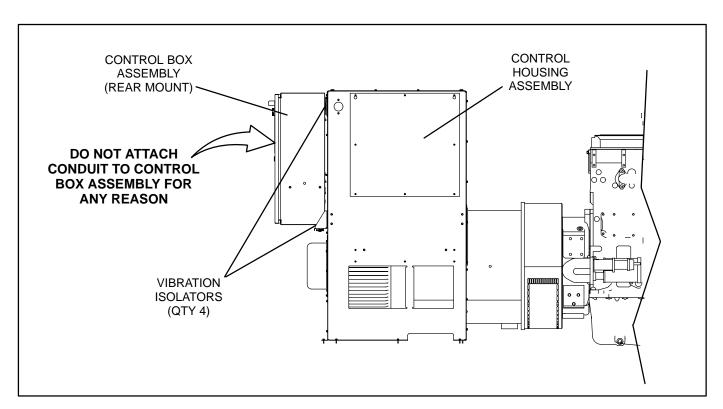


FIGURE 5-1. CONTROL BOX - REAR MOUNT

REMOTE MONITOR/CONTROL CONNECTIONS

Customer monitor/control connections are attached to terminal blocks TB3, TB4 TB5 and TB8 (see Figure 5-2). Optional equipment such as a remote annunciator panel, sensing devices used to monitor genset operation, remote start/stop switches, control box heater, and etc. are also attached to these terminal blocks. Driver signals for customer supplied relays are also provided for several alarm and shut down conditions. Refer to Customer Connections diagram in Section 9.

ACAUTION When removing terminal block connectors (TB4, TB5, or TB8) from cards in card cage, note orientation of connector. These terminal block connectors are not keyed and can be installed incorrectly, which will cause control failures.

Terminal Block Wiring

ACAUTION Always run control circuit wiring in a separate metal conduit from AC power cables to avoid inducing currents that could cause problems within the control.

Digital Connections: Connection points, other then relayed outputs, network, switched B+ and B+

are considered digital connections to the terminal blocks. The type/gauge wire to use for these connections are:

- Less than 1000 feet (305m), use 20 gauge stranded copper wire.
- 1000 to 2000 feet (305 to 610m), use 18 gauge stranded copper wire.

Relay Connections: Due to the wide variety of devices that can be attached to the relay outputs of terminal blocks, the electrical contractor must determine the gauge of the **stranded copper** wire that is used at this installation site. Refer to Customer Connections diagram in Section 9 for the relay specifications.

Switched B+: (Fused at 10 amps.) Same as Relay Connection description.

Delayed Switched B+: (Fused at 10 amps. with a 10 second dropout) Use for external fuel shut-off solenoid. Same as Relay Connection description.

B+: (Fused at 10 amps.) Same as Relay Connection description.

Network Connections: Refer to Onan 900-0366 *PowerCommand Network Installation and Operation* manual for the type/gauge wire to use for these connections.

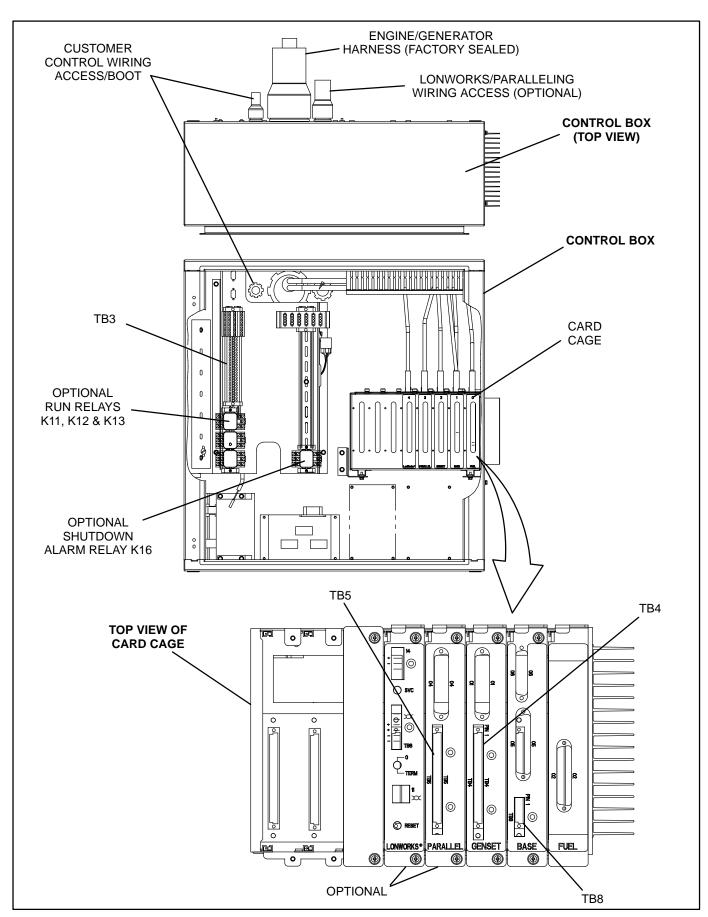


FIGURE 5-2. CONTROL BOX ASSEMBLY

RUN RELAYS (K11, K12, K13)

The optional run relays are rail mounted inside the control box (Figure 5-2). The rail mount allows you to easily remove and replace the snap-on relays. The generator set can be equipped with one, two or three run relays.

The three-pole, double-throw run relays (Figure 5-3) are used to control auxiliary equipment such as

fans, pumps and motorized air dampers. The run relays are energized when the generator set reaches operating speed.

The contacts are rated:

- 10 amps at 28 VDC or 120 VAC, 80%PF
- 6 amps at 240 VAC, 80%PF
- 3 amps at 480/600 VAC, 80%PF

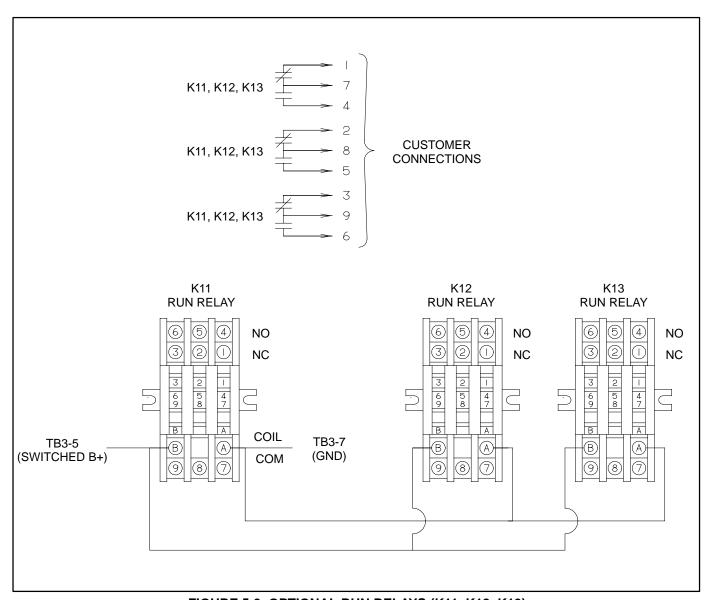


FIGURE 5-3. OPTIONAL RUN RELAYS (K11, K12, K13)

ALARM RELAY (K16)

The optional alarm relay is rail mounted inside the control box (Figure 5-2). The rail mount allows you to easily remove and replace the snap-on relay.

The three-pole, double-throw alarm relay (Figure 5-4) is often used to energize warning devices such

as audible alarms. Any generator set shutdown will energize the alarm relay.

The contacts are rated:

- 10 amps at 28 VDC or 120 VAC, 80%PF
- 6 amps at 240 VAC, 80%PF
- 3 amps at 480/600 VAC, 80%PF

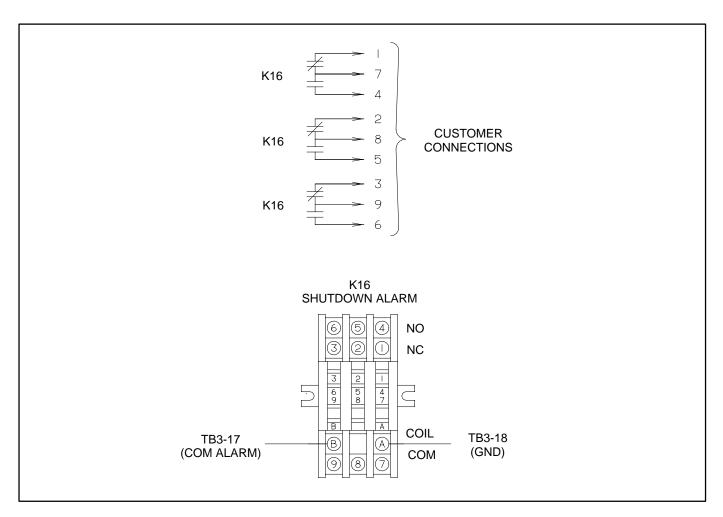


FIGURE 5-4. OPTIONAL ALARM RELAY (K16)

THIS PAGE LEFT INTENTIONALLY BLANK

6. AC Electrical Connections

GENERAL

This section provides the procedure that is used to connect the AC electrical system of the genset.

Before making any AC electrical connections, make certain the generator set cannot be accidentally started. Move the O/Manual/Auto switch on the control panel to the O (off) position. Turn off or remove AC power from the battery charger and then remove the negative (–) battery cable from the set starting battery.

AWARNING Ignition of explosive battery gases can cause severe personal injury or death. Arcing at battery terminals, light switch or other equipment, flame, pilot lights and sparks can ignite battery gas. Do not smoke, or switch trouble light ON or OFF near battery. Discharge static electricity from body before touching batteries by first touching a grounded metal surface.

Ventilate battery area before working on or near battery—Wear goggles—Stop genset and disconnect charger before disconnecting battery cables—Disconnect negative (–) cable first and reconnect last.

A CAUTION Disconnect battery charger from AC source before disconnecting battery cables. Otherwise, disconnecting cables can result in voltage spikes damaging to DC control circuits of the set.

AWARNING Accidental starting of the generator set can cause severe personal injury or death. Prevent accidental starting by disconnecting the negative (–) cable from the battery terminal.

<u>AWARNING</u> Each of the operations described in this section should be done only by persons trained and experienced in electrical maintenance. Improper procedures may result in property damage, bodily injury or death.

Connecting the genset AC electrical system involves:

- Installation of transfer switch
- Generator output voltage selection
- Load cable connection
- Standard and optional AC equipment connections (e.g., control box heater, coolant heater, etc.

Local regulations often require that wiring connections be made by a licensed electrician, and that the installation be inspected and approved before operation. All connections, wire sizes, materials used, etc. must conform to the requirements of electrical codes in effect at the installation site.

AWARNING Improper wiring can cause a fire or electrocution, resulting in severe personal injury or death and/or property and equipment damage.

Before starting the genset, check to make sure that all electrical connections are secure, and that all wiring is complete. Replace and secure any access panels that have been removed during installation. Check that the load cables from the genset are properly connected.

AWARNING Backfeed to utility system can cause electrocution or property damage. Do not connect to any building electrical system except through an approved device and after building main switch is opened.

TRANSFER SWITCH

If the installation is for standby service, a transfer switch must be used for switching the load from the normal power source to the genset (see Figure 6-1). Either a manual or automatic transfer switch may be used. Follow the installation instructions provided with the transfer switch when connecting the load and control wiring.

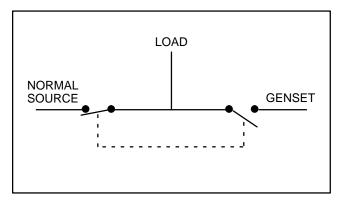


FIGURE 6-1. TYPICAL LOAD TRANSFER FUNCTION

AC WIRING

Generator Voltage Connections

The available generator output voltages and maximum current ratings are specified on the generator set nameplate. Line-to-neutral voltage is always the lower voltage shown and line-to-line voltage is the higher rating.

These generators can be configured to the nameplate voltages as shown on the Reconnection Diagram located on the side access cover of the control housing. Many of the voltages listed will require reconfiguration of the generator output leads on the connection terminal block. This reconfiguration must only be done by service personnel that are trained and experienced to perform electrical installation. The generator set was adjusted to produce a specified voltage during production verification testing prior to shipment. The installer must always check the stator lead terminal block connections and perform any necessary reconnect to obtain the voltage required.

Some generator sets are capable of producing a wide range of voltages and connection configurations, others have specific limited capabilities. Refer to wiring diagram and generator voltages (from the nameplate) when reviewing the voltage connection information and use the wiring diagram supplied with your generator set when actually performing load connections.

ACAUTION Reconfiguring generator sets to higher voltages can exceed the voltage capability of the specific generator windings and damage the generator and also decrease line current, rendering line circuit breakers too large. Consult with your distributor before performing reconnection for a different voltage.

ACAUTION Reconfiguring generator sets to lower voltages can reduce generator set ratings, and also increase line current, rendering line circuit breakers too small. Consult with your distributor before performing reconnection for a different voltage.

Load Connections

Flexible conduit and stranded conductors must be used for connections to take up movement of the generator set.

All loads are connected to the generator by bolting **stranded** load wires to the appropriate terminals on the generator reconnection terminal block or circuit breaker lugs. The terminals are stamped U, V, W and N to indicate the line and neutral connections. (Reference: U, V, and W correspond with L1, L2 and L3; and N with L0 respectively).

Load Balancing

When connecting loads to the generator set, balance the loads so the current flow from each line terminal (L1, L2 and L3) is about the same. This is especially important if both single phase and three phase loads are connected. Any combination of single phase and three phase loading can be used as long as each line current is about the same, within 10 percent of median value and no line current exceeds the nameplate rating of the generator. Check the current flow from each line after connections by observing the control panel ammeter.

Current Transformers

Current transformers (CT's) are required on gensets that contain AC meters. The CT's must be installed as noted in the following CT Installation Requirements.

Refer to the Reconnection Diagram to identify the output leads/phase that must be routed through each CT, and also appropriate transformer post selection for meter sensing leads. The transformers are labeled CT21, CT22 and CT23 on the reconnection wiring diagram. (The Reconnection Diagram is located on the upper side cover of the control housing.)

CT Installation Requirements:

- A. The CT has a dot on one side. This dot must be facing toward the generator (conventional current flowing into the dot). A dot is also used to indicate pin 1 of the CT.
- B. CT21 U load leads (A phase),CT22 V load leads (B phase)CT23 W load leads (C phase)
- C. Route the appropriate load wires through each CT.
- D. The CT's have dual secondaries (3 pins). The CT secondary wire marked 1 is connected to pin 1 of the CT. CT secondary wire marked 2/3 is connected to pin 2 for high voltage gensets or to pin 3 for low voltage gensets. (Refer to Reconnection Diagram.)

Grounding

The following is a brief description of system and equipment grounding of permanently installed AC generators within a facility wiring system. It is important to follow the requirements of the local electrical code.

Figure 6-2 illustrates typical system grounding for a 3-pole and a 4-pole automatic transfer switch (ATS). In the 3-pole ATS, note that the generator neutral is connected to the ATS and is NOT bonded to ground at the generator. In the 4-pole ATS system, a grounding electrode conductor and a bonding jumper are used to connect the generator neutral to ground. In some installations, a CT may be required for ground fault monitoring (refer to Figure 6-2 for CT location).

Make sure the genset is grounded to earth in one location only. On generators without a circuit breaker, ground to the point indicated on the top of the generator. On gensets with circuit breakers, use the ground lug provided in the circuit breaker box.

AWARNING Electric current can cause severe personal injury or death. Bonding and grounding must be done properly. All metallic parts that could become energized under abnormal conditions must be properly grounded.

Typical requirements for bonding and grounding are given in the National Electrical Code, Article 250. All connections, wire sizes, etc. must conform to the requirements of the electrical codes in effect at the installation site.

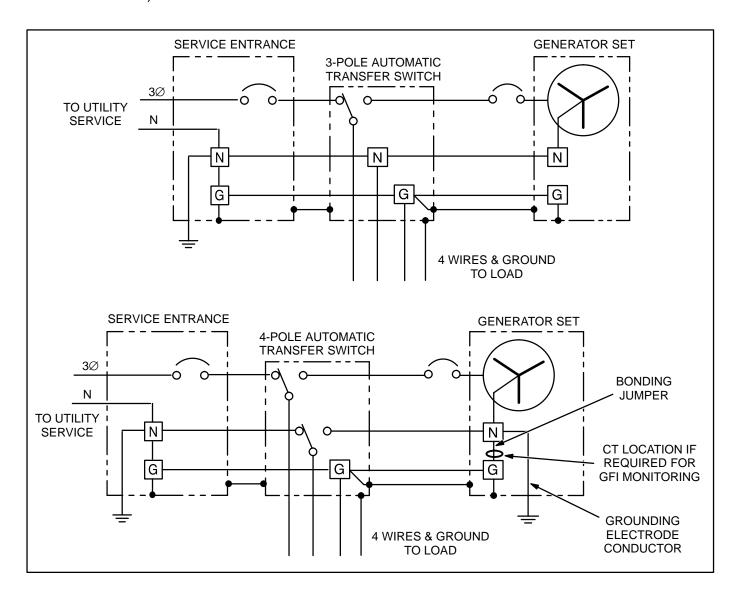


FIGURE 6-2. TYPICAL SYSTEM GROUNDING ONE-LINE DIAGRAMS

CONTROL HEATER (OPTIONAL)

A control heater (Figure 6-3) provides a means of humidity /temperature control of the control box interior. It protects the components when the genera-

tor set is subjected to varying ambient air conditions during extended periods of non-use. Thermostat control de–energizes the heater when the control box interior reaches 75° F (24° C).

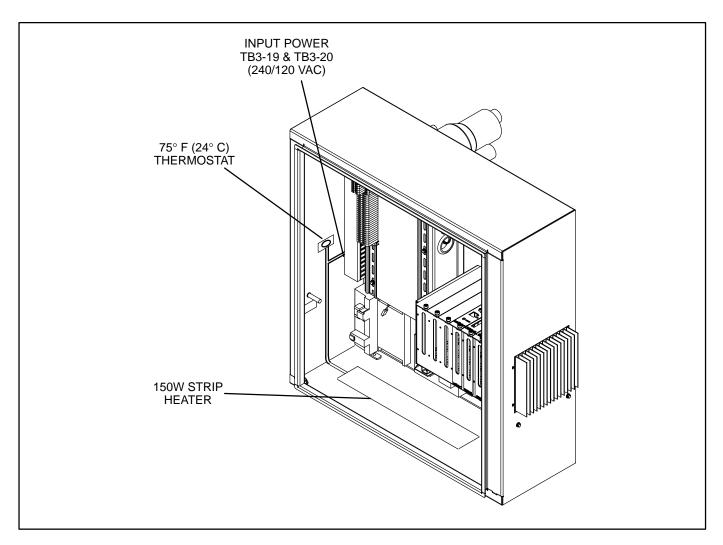


FIGURE 6-3. OPTIONAL CONTROL HEATER

COOLANT HEATER

Coolant heaters keep the engine coolant warm when the engine is shut down. It heats and circulates the coolant within the engine. This reduces startup time and lessens engine wear caused by cold starts. It is electrically operated and thermostatically controlled.

A CAUTION The coolant heater must not be operated while the cooling system is empty or when the engine is running or damage to the heater will occur.

Figure 6-4 shows a typical coolant heater. Connect the heater to a source of power that will be on during

the time the engine is not running. Be sure the supply voltage and circuit amperage is correct for the heater element rating.

A battery charger is required to prevent battery discharge. The heater control relay draws 83 mA of current when the heater(s) is off. The heater is off when the engine has reached the proper temperature or the engine is running.

A CAUTION Do not connect AC power to the heater before connecting battery cables. Heater will run continuously without DC power and can overheat and damage heater.

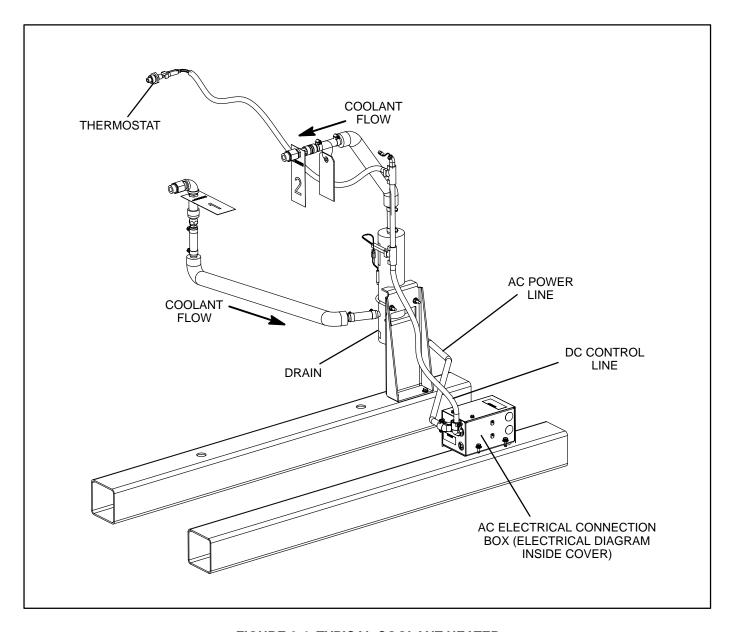


FIGURE 6-4. TYPICAL COOLANT HEATER

GENERATOR HEATER

A generator heater(s) is used to help keep the generator free of condensation when the generator set is not running. During cool and humid conditions, condensation can form within a generator, creating flashing and a shock hazard.

AWARNING Water or moisture inside a generator increases the possibility of flashing and electrical shock, which can cause equipment damage and severe personal injury or death. Do not use a generator which is not dry inside and out.

Figure 6-5 illustrates the installation of two heater elements. Connect the heater(s) to a source of power that will be on during the time the engine is not running. Be sure the supply voltage and circuit amperage is correct for the heater element rating.

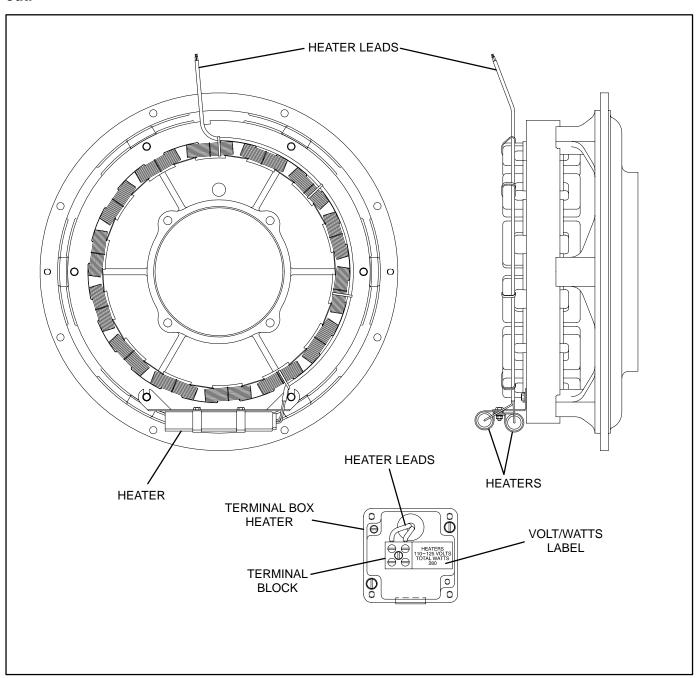


FIGURE 6-5. TYPICAL GENERATOR HEATER INSTALLATION

THIS PAGE LEFT INTENTIONALLY BLANK

7. Prestart Preparation

GENERAL

Before attempting the initial start of the generator set, be sure to complete the *Installation Checklist* in *Section 8*

ELECTRICAL SYSTEM

Make sure all electrical connections are secure and all wiring is complete and inspected. Replace and secure any access panels that may have been removed during installation.

Battery Connections

<u>AWARNING</u> Accidental starting of the generator set can cause severe personal injury or death. Make sure that the O/Manual/Auto switch on the control panel is set to the O (Off) position before connecting the battery cables.

Starting the unit requires 24 volt battery current, using two, 12 volt batteries (see *Specification* section). Connect the batteries in series (negative post

of first battery to the positive post of the second battery) as shown in Figure 7-1.

Necessary battery cables are on the unit. Service batteries as necessary. Infrequent use (as in emergency standby service), may allow battery to self-discharge to the point where it cannot start the unit. If installing an automatic transfer switch that has no built-in charge circuit, connect a separate trickle charger. Onan automatic transfer switches include such a battery charging circuit.

AWARNING Ignition of explosive battery gases can cause severe personal injury or death. Always connect negative (–) battery cable last to prevent arcing.

AWARNING Ventilate battery area before working on or near battery. Arcing at battery terminals, light switch or other equipment, flame, pilot lights and sparks can ignite battery gas. Do not smoke, or switch trouble light ON or OFF near battery. Discharge static electricity from body before touching batteries by first touching a grounded metal surface.

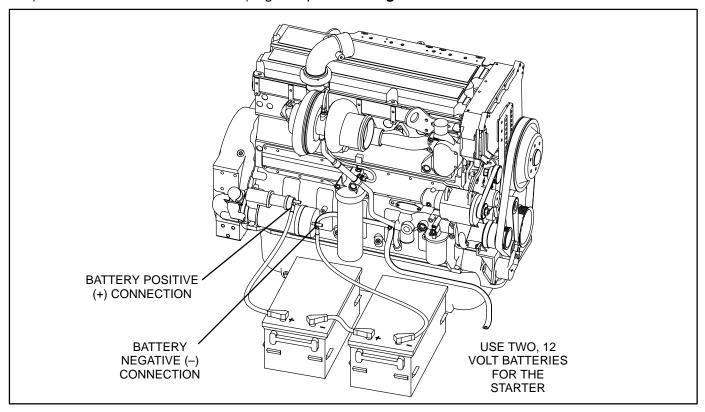


FIGURE 7-1. GENSET BATTERY CONNECTIONS

CONTROL PRESTART CHECKS

All generator set configuration options are set at the factory except for site related options, (e.g., Start/Stop Delays, Cycle Crank, Customer Fault names, etc.).

Adjustments of these options are divided into two categories within the menu driven system. These two categories are Setup and Adjust.

The Setup submenus are intended for qualified service personnel only. The Adjust submenu is intended for qualified service and site personnel only.

For this reason, a separate password is required to modify the Setup submenus. The Adjust submenu may or may not require a password (site dependent).

The following procedure describes how to modify the Adjust submenu options that are required to complete the genset installation.

The Adjust submenu allows you to calibrate the generator set voltage/frequency and start/stop time delays. For the prestart checks, adjustment of only the start/stop delays is required.

ADJUST Submenu

Figure 7-2 shows the main menus (Menu A and Menu B) of the system control and the Adjust submenu.

To display the Adjust submenu, press the **MORE>>** button in Menu A and then the **ADJUST** button in Menu B.

The Adjust procedure is intended for qualified service personnel and site personnel only and may require a **USER** password. If a password is required, the **USER** password menu will appear when you try to modify the Adjust submenu. (Refer to *PASS-WORD Menu* in this section to enter password.

Changes are automatically saved when you exit this menu.

Use the + and - buttons to increase or decrease the values in the following fields. Use the arrow (\rightarrow) button to move the cursor within a field or to the next field.

START DELAY: This delay applies only to remote starting in the Auto mode. The Start Delay adjustment range is 0 to 300 seconds.

STOP DELAY: This delay applies only to remote stopping in the Auto mode. The Stop Delay adjustment range is 0 to 600 seconds.



FIGURE 7-2. ADJUST SUBMENU

PASSWORD Menu

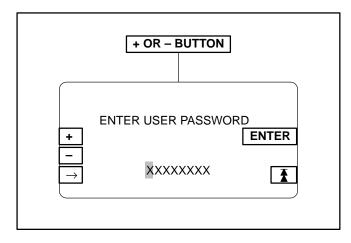
When viewing the Adjust submenu, pressing either the + or – button will display the Password menu (Figure 7-3) if a *User* password is assigned to this field. After entering the correct password, the system will allow you to modify the submenu. To prevent unauthorized adjustment, the entered password is valid for only 10 minutes after the last button is pressed.

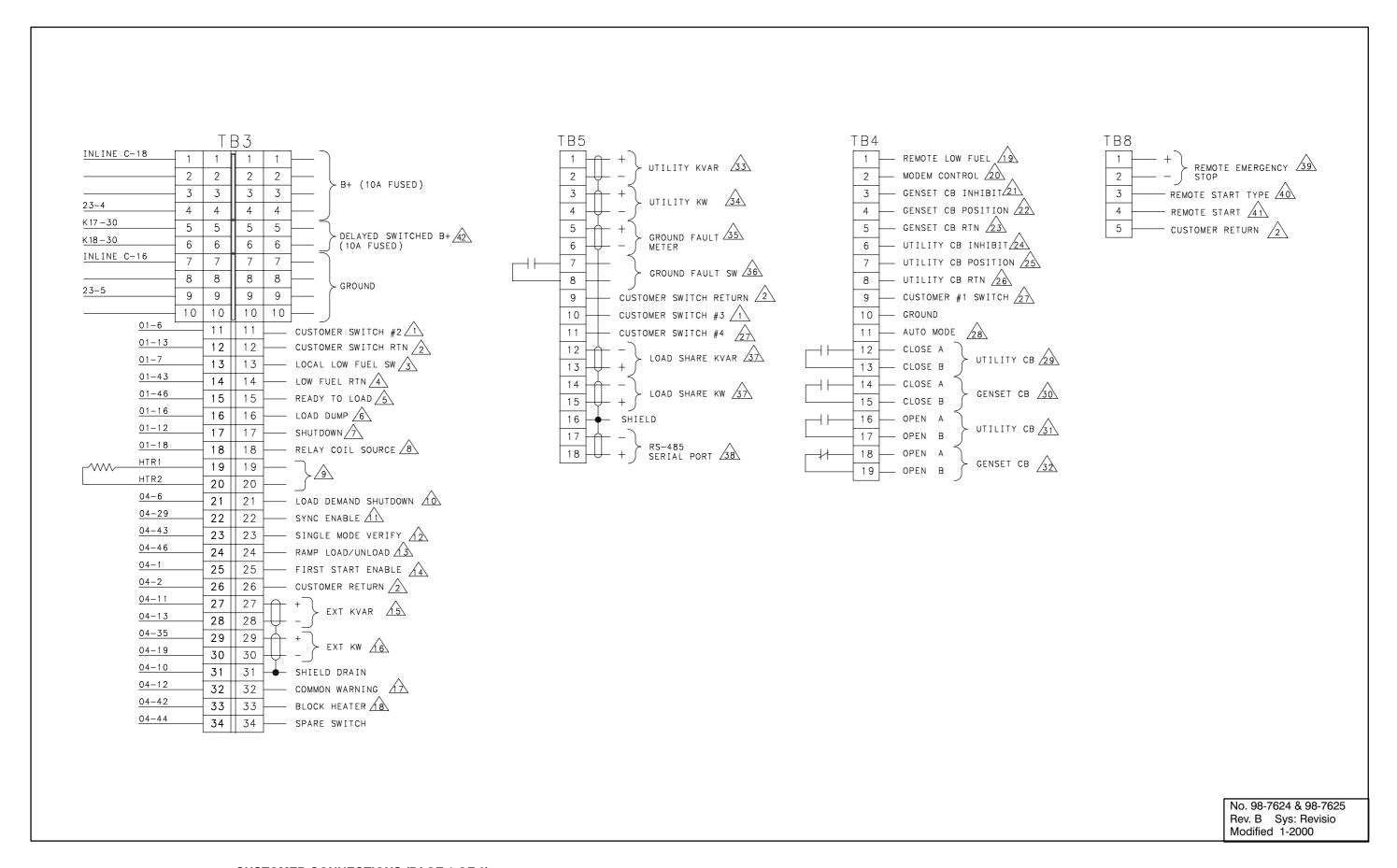
To enter the password:

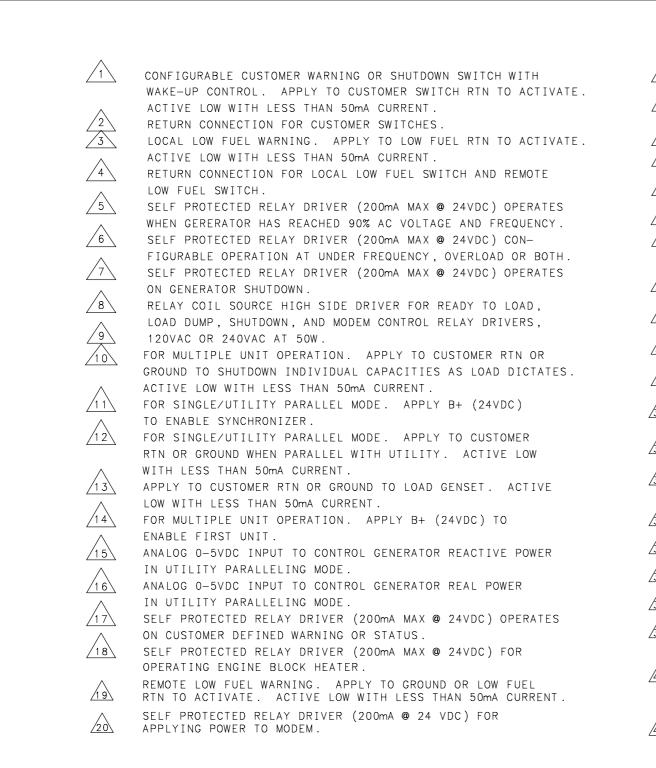
- 1. Display Adjust submenu.
- 2. Press either the + or button within the displayed submenu. The Password menu appears. (Adjustment is allowed if Password menu does not appear.)
- 3. Press the + and button to select the first character of the **User** password.
- Press the → button to select the next character field.
- 5. Repeat steps 3 and 4 to enter remaining password characters.
- 6. Press the **Enter** button after entering the password. The Adjust submenu will reappear.
- 7. Exit Adjust submenu to save changes.

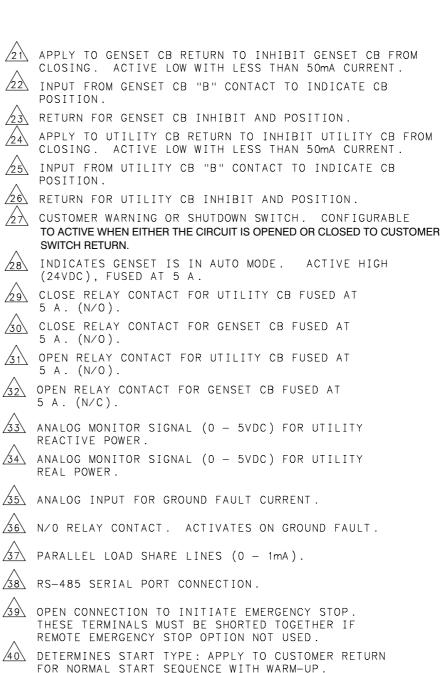
STARTING

Refer to the generator set *Operator's* manual for important safety precautions and recommended procedures for starting the genset and verifying proper operation. Start the generator set and verify all engine and generator gauges are displaying the correct values.




FIGURE 7-3. PASSWORD MENU


8. Installation Checklist


GENERAL Generator set wattage capacity is sufficient to handle maximum anticipated load. At least 3 feet of clearance (or greater for housing door) is provided around entire generator set for servicing and ventilation. Generator set is located in an area not subject to flooding. All operating personnel have read and are familiar with Operator's Manual. All operators have been thoroughly briefed on preventive maintenance procedures. ☐ All operators have read and understand all Important Safety Instructions in Operator's Manual. **GENERATOR SET SUPPORT** ☐ Floor, roof or earth on which the generator set rests is strong enough and will not allow shifting or movement. Observe local codes on soil bearing capacity due to freezing and thawing. ☐ Generator set is properly supported and retained to approved base. ☐ Supporting base is large enough and is of non-combustible material – extends 6-inches all around set. COOLING AIR FLOW Generator set air inlet is faced into direction of strongest, prevailing winds. Air inlet openings are unrestricted and at least 1-1/2 times larger than air outlet area. Cooling air outlet is on downwind side of building (if not, wind barrier is constructed). Proper ducting material (sheet metal, canvas) is used between radiator and air outlet. **DIESEL FUEL SYSTEM** ☐ Fuel tanks meet or exceed all Local, State or National codes. Fuel lines are properly installed, supported and protected against damage. Approved flexible fuel line is installed between main fuel supply line and generator set's fuel system, near the generator set, to protect the fuel system from damage caused by vibration, expansion and contrac- Strainer or fuel screen (100 to 120 mesh) is installed in the fuel supply line to protect the fuel lift pump, day tank transfer pump or float valve seat from fuel supply tank debris. Fuel supply line shutoff valves are installed to prevent fuel flow in case of leaks. No shutoff valves are installed on engine fuel return line. External fuel pumps are connected and operational at all times (generator set started or shut down). Fuel system is properly primed. □ No fuel leaks are found in supply line or engine fuel system.

EXHAUST SYSTEM

Ш	Operators are thoroughly briefed on the dangers of carbon monoxide gas.
	Areas around set are well ventilated. No possibility of exhaust fumes entering building doors, windows, or intake fans.
	Exhaust gases are piped safely outside and away from building.
	The correct length of approved rigid pipe is connected to the generator set flexible pipe using approved securing methods with no weight resting on engine exhaust components. There are no bends in flex section.
	Condensation drain is provided in lowest section of exhaust piping.
	Exhaust piping is insulated to guard against burns to personnel.
	Exhaust piping passing through walls or ceilings have approved fire-proof materials and are in compliance with all codes.
	Exhaust piping is large enough in diameter to prevent excessive back pressure on engine.
AC AND DC WIRING	
	Wire sizes, insulation, conduits and connection methods all meet applicable codes.
	AC and DC wires are separated in their own conduit to prevent electrical induction.
	All load, line and generator connections are proper and correct.
	Flexible conduit between generator set and building or surrounding structure.
GENERATOR SET PRESTART	
	Generator set engine is properly serviced with oil and coolant.
	Batteries are properly installed, serviced and charged.
	Battery charger and engine coolant heater are connected and operational.
	All generator set covers and safety shields are installed properly.
	All fuel and coolant shutoff valves are operational.

APPLY TO CUSTOMER RETURN OR GROUND TO INITIATE
A REMOTE START. ACTIVE LOW WITH LESS THAN
50mA CURRENT.

OPEN = EMERGENCY START SEQUENCE.

SWITCHED B+ THAT DROPS OUT AFTER A 10 SECOND TIME DELAY. USE FOR EXTERNAL FUEL SHUT-OFF SOLENOID.

No. 98-7626 & 98-7627 Rev. B Sys: Revisio Modified 1-2000

Cummins Power Generation 1400 73rd Avenue N.E. Minneapolis, MN 55432 1-800-888-6626 763-574-5000 International Use Fax: 763-528-7229

Cummins is a registered trademark of Cummins Inc.

