Onan # Operator's Manual OT Switch 962-0102 100-280A (Spec C) 400-1000A (Spec B) 2-80 # **Safety Precautions** This manual includes the following symbols to indicate potentially dangerous conditions to the operator or equipment. Read the manual carefully and know when these conditions exist. Then take the necessary steps to protect personnel and the equipment. WARNING This symbol is used throughout the text to warn of possible serious per- sonal injury or death. CAUTION This symbol refers to possible equipment damage. The automatic transfer switch has components with high voltages which present shock hazards which might cause serious personal injury or death. For this reason, read the following suggestions. Keep the automatic transfer switch cabinet closed and locked. Make sure only authorized personnel have the cabinet keys. Always move the operation selector switch on the generator set or automatic transfer switch to STOP, disconnect the starting batteries of the generator set, and remove AC line power to the automatic transfer switch before performing maintenance or adjustments (unless specified otherwise in the instructions—then only using extreme caution due to danger of shock hazard). Before using the disconnect plug (if equipped) for de-energizing the control panel, be sure to place the operation selector switch on the generator set or automatic transfer switch to the *STOP* position. Neglect of this procedure results in set starting and energization of the transfer switch generator side. Use rubber insulative mats placed on dry wood platforms over floors that are metal or concrete when working on any electrical equipment. Do not wear damp clothing (particularly wet shoes) or allow skin surfaces to be damp when handling electrical equipment. Jewelry is a good conductor of electricity and should be removed when working on the electrical equipment. Do not work on this equipment when mentally or physically fatigued. # **TABLE OF CONTENTS** | GENERAL INFORMATION | | |----------------------------------|----| | Introduction | 1 | | Transfer Switch Application | | | Automatic Transfer Switches | | | INSTALLATION | | | Location | | | Mounting | | | Wiring | | | Checkout Procedures | 6 | | DESCRIPTION | 9 | | Model Number | 9 | | Transfer Switch | | | Meter Lamp Panel | | | Starting Circuits | 12 | | Control Accessory Group | 12 | | Solid-State, Two-Wire | 13 | | Solid-State, Three-Wire | 15 | | Relay, Two-Wire | 16 | | Relay, Three-Wire | 18 | | OPERATION | 19 | | Automatic Operation | 19 | | Retransfer, Manually Initiated | 19 | | Test Operation | | | Exercise | 20 | | Overcrank | 20 | | Manual Operation | 20 | | Single Actuator, 100-280 Ampere | 20 | | Single Actuator, 400-1000 Ampere | 20 | | Two Actuator, Switched Neutral | 21 | | ADJUSTMENTS | 24 | | Latch and Latch Pin | 24 | | Exerciser | 25 | | Time Delays | | | Overcrank | | | Battery Float Charge | 28 | | ACVoltage Sensors | 28 | | Undervoltage Sensor Setting | 28 | | Overvoltage Sensor Setting | 29 | | Programmed Transition | 29 | | TROUBLESHOOTING | 30 | | | 20 | | | | | ¢ | |--|--|--|----------| <u>.</u> | 4 | | | | | ÷ | | | | | | ### GENERAL INFORMATION #### INTRODUCTION This Operator's Manual provides the information necessary for the successful operation of Onan's Series OT transfer switches. The manual includes installation, description, operation, and adjustment chapters. A troubleshooting guide and service information are also included. Operators should become familiar with this manual and especially the operation procedures that apply to their Series OT transfer switch. #### TRANSFER SWITCH APPLICATION Transfer switches are an essential part of a building's standby or emergency power system. The normal power source, commonly the utility line, is backed up by an emergency power source, often an electric generating set. A transfer switch supplies the electrical load with power from one of these two power sources. The load being served is connected to the common of the transfer switch as in Figure 1. Under normal conditions the load is supplied with power from the normal source as illustrated. Should the normal power source be interrupted, the load is transferred to the emergency power source. When normal power returns, the load is retransferred to the normal power source. The transfer and retransfer of the load are the two most basic functions of a transfer switch. FIGURE 1. TRANSFER SWITCH #### **AUTOMATIC TRANSFER SWITCHES** Automatic transfer switches are capable of operation without operator involvement. During automatic operation, automatic transfer switches perform the following basic functions: - Senses the interruption of the normal power source. - 2. Sends a start signal to the electric generating set. - 3. Transfers the load to the emergency power source. - 4. Senses the return of the normal power source. - 5. Retransfers the load to the normal power source. - 6. Sends a stop signal to the electric generating set. ### **INSTALLATION** #### LOCATION Locating the transfer switch in the existing electrical circuit varies with application and type of entrance switch. There must be a switch and fuses in the commercial power line before the transfer switch. See the typical installation in Figure 2. #### MOUNTING Choose a vibration-free mounting surface. See Figure 2. Avoid hot, moist, or dusty locations. #### **Wall Mount** - 1. Install two top mounting bolts in the wall for the top cabinet mounting keyholes. - With the shipping box standing so the cabinet is upright, carefully remove the top and sides of the box. - 3. Raise cabinet and mount on the two mounting bolts in the wall (using cabinet keyholes). WARNING sonal injury. Be sure to have sufficient manpower for lifting cabinet to prevent serious per- FIGURE 2. TYPICAL AUTOMATIC TRANSFER SWITCH INSTALLATION - 4. Open cabinet, remove twist-lock, disconnect plug and open control panel. - 5. Remove screws from meter-lamp panel flange and open panel. - 6. Tighten two top mounting bolts. - 7. Install two bottom mounting bolts and tighten. #### Floor Mount - With the shipping box standing so the cabinet is upright, carefully remove the top and sides of the box. - 2. Connect a hoist or similar lift to the two lifting eyebolts on the cabinet top. WARNING Do not attempt to lift manually because of the danger of serious personal injury. Carefully raise the cabinet and move it to its installation location. Mounting bolts are usually placed in concrete when floor is poured. Bolts should protrude about one inch (25 mm) from floor. Secure the cabinet to the floor. #### WIRING Onan suggests to the qualified personnel that the wiring be performed in this sequence: 1. Before wiring is started, test the operation of the generator set from its own controls. - Put generator set's control switch at "stop" and remove the negative lead from the cranking battery. - 3. Connect wires of sufficient size to carry rated current from the line, load, and generator set directly to the transfer switch terminals which are marked A, B, and C (A and B on single-phase switches). Table 2 gives the type and maximum wire size the transfer switch will accept. On the 800 and 1000 ampere OT cabinets, the bottom cabinet panel can be removed for wire connections. For OT automatic transfer switches with an AC ammeter, the generator load wires must pass through the transformer twice (two primary turns) for a 100-ampere OT, once (one primary turn) for any 150-through 1000-ampere OT. See Figure 3. - 4. Neutral Bar (if used): Connect the neutral wires to the neutral bar (Figure 4). Table 2 lists the wire sizes and types the neutral bar accepts. - 5. Area Protection or Remote Test Switch (if used): - a. Remove terminal jumper located between terminals 4 and 5 of terminal strip TB1 (Figure 5). - b. Connect the two leads from the normally closed circuit of area protection equipment or single-pole, single-throw remote test switch to terminals TB1-4 and TB1-5. Use number 16 wire up to 800 feet or 244 metres (maximum resistance of 4 ohms per line). 150 THROUGH 1000 AMPERE OT (ONE TURN) FIGURE 3. CURRENT TRANSFORMER WIRING **TABLE 1. SERIES OT ENCLOSURE DIMENSIONS (OVERALL)** | АМР | NEMA
TYPE* | SWITCHED
NEUTRAL
POLE | PROGRAMMED
TRANSITION | Н | w | D | |----------|---------------|-----------------------------|--------------------------|-----|-----|-----| | 100-280 | 1 | No | No | 36" | 28" | 14" | | 100-150 | 1 | No | Yes or No | 36 | 28 | 14 | | 100-150 | 1 | Yes | No | 41 | 36 | 21 | | 225-280 | .1 | No | Yes | 41 | 36 | 21 | | 225-280 | 1,3R,5 | Yes | Yes or No | 60 | 36 | 18 | | 400-600 | 1,3R,5 | Yes or No | Yes or No | 60 | 36 | 18 | | 800-1000 | 1,3R,5 | Yes or No | Yes or No | 72 | 40 | 24 | | 100-225 | 4 | Yes or No | Yes | 72 | 48 | 24 | | 280-1000 | 4 | No | Yes or No | 90 | 72 | 24 | | 100-1000 | 4 | Yes | Yes or No | 90 | 72 | 24 | *NEMA TYPE 1 - General Purpose 3R - Rainproof 4 - Waterproof 5 - Dustproof TABLE 2. SERIES OT TRANSFER SWITCH WIRE CAPACITIES | TRANSFER SWITCH | TERMINAL LUGS Number of Conductors and Size Per Pole | | | | |-----------------|--|--------------------|--|--| | (AMPERES) | Switch Pole* | Neutral Bar* | | | | 100 | ONE | ONE | | | | | No. 6 - 250 MCM | No. 6 - 250 MCM | | | | 150 & 225 | ONE | ONE | | | | | No. 6 - 350 MCM | No. 6 - 350 MCM | | | | 280 | ONE | ONE | | | | | No. 4 - 500 MCM | No. 4 - 500 MCM | | | | 400 | ONE | ONE | | | | | 350 MCM -1000 MCM | 350 MCM - 1000 MCM | | | | 600 | TWO | TWO | | | | | No. 2 - 600 MCM | No. 2 - 600 MCM | | | | 800 & 1000 | FOUR | FOUR | | | | | No. 2 - 600 MCM | No. 2 - 600 MCM | | | ^{*} Connectors compatible with copper and aluminum. FIGURE 4. TRANSFER SWITCH WIRE CONNECTIONS - 6. Transfer Inhibit Circuit: To inhibit transfer of the automatic transfer switch by another automatic transfer switch (for
paralleling systems, priority selection systems, etc.), remove the jumper between TB1-6 and TB1-7. Connect the wire leads from the external equipment to these two terminals. See Figure 5. - 7. Diesel Preheat Time Delay (if used): If this delay is used for operation of glow plugs on three-wire start generator sets, connect a wire from terminal TB1-H in the automatic transfer switch (three-wire starting only) to terminal "H" on the generator set. Use number 16 wire for distances up to 100 feet or 31 metres (maximum of 0.5 ohm per line). See Figure 5. - 8. Onan Annunciator Connector for Overcrank (if used): Connect a wire from terminal TB1-53 in the automatic transfer switch (three-wire starting only) to terminal 53 on the Onan annunciator panel (Figure 5). Use number 16 wire for dis- tances up to 800 feet or 244 metres (maximum of 4 ohms per line). The three-wire starting automatic transfer switch supplying the start-stop signals must use the 2 to 3 wire converter 300-0926. - 9. Battery Voltage Alarm Circuit (if equipped): For automatic transfer switches with a high battery voltage ("HI BAT VOLT") and low battery voltage ("LO BAT VOLT") lamp on the meter-lamp panel, there is a six-place terminal block TB2 for external circuit connections. The terminal block is located just above the TB1 terminal block used for remote connections (Figure 5) Connect the wire leads from an external signal or alarm to terminal block TB2 as follows: - a. High battery voltage alarm—normally open contacts connect to terminals 1 and 2, normally closed contacts connect to terminals 2 and 3. FIGURE 5. CABINET TERMINAL BLOCKS TB1 and TB2 - b. Low battery voltage alarm—normally open contacts connect to terminals 4 and 5. Normally closed contacts connect to terminals 5 and 6. Contact ratings are 2 amperes at 24 VDC and 120 VAC. - 10. Auxiliary Contacts (if used): Auxiliary contacts are located on the normal and emergency sides of the transfer switch for external alarm or control circuitry. To gain access to the auxiliary contacts, remove the transfer switch cover which houses the motor disconnect switch S1 (cover held in place by four screws). See Figure 4. The contacts have ratings of 25 amperes at 125, 250, or 480 VAC; 1 horsepower at 125 VAC; 2 horsepower at 250 VAC or 480 VAC; and a pilot duty rating of 750 VA at 277 VAC maximum. - 11. Connect the low voltage DC control wires from the automatic transfer switch terminal block TB1 to the generator set (Figure 5). Two-wire starting models use three terminals, B+, ground (GND) and remote (RMT). Three-wire starting models use four terminals, B+, 1, 2, and 3. Use number 16 wire up to 100 feet or 31 metres (maximum of 0.5 ohm per line). Run all low voltage DC control wires in a separate conduit from AC wires. Use a flexible conduit between generator set and automatic transfer switch to prevent transmission of vibration. - 12. Three-Phase Only: Phase rotation must be checked and corrected before any load can be added to the generator set. Use the following procedures: - a. Connect an Onan load-test panel, phase rotation meter or three-phase motor to the transfer switch load terminals. Connect power to the line side (normal) of the transfer switch and observe rotation. - b. Connect the battery and start the generator set. Check the phase rotation of the generator lead connections on the transfer switch. If this phase rotation is different from that of normal power, reverse two of the generator leads on the transfer switch. # CHECKOUT PROCEDURES AFTER INSTALLATION After the generator set and automatic transfer switch are properly installed, check the various automatic transfer switch functions. Follow the appropriate checkout procedure for the automatic transfer switch, depending on whether it has a solid-state or relay control accessory group. If the control accessory panel does not close properly because the latch is above or below the latch pin, adjust the latch mechanism as described in the ADJUSTMENTS section. # Solid-State Control Accessory Groups #### **Check Switch Positions** - Operation Selector Switch. For a two-wire starting automatic transfer switch, move the operation selector switch on the generator set to "STOP." For three-wire starting automatic transfer switches, move operation selector switch to "STOP." - Move the load selector switch to "WITHOUT LOAD." - 3. Move test transfer switch to "NORMAL." #### **Connect AC Line** Connect the AC normal line service to the automatic transfer switch. The transfer switch should transfer the load to the line and should light the green "NORMAL" lamp (if equipped with lamps). #### **Connect the Battery** Charge ammeter should now indicate a charging current (if equipped with battery charger). #### **Test Overcrank Function** - 1. Two-wire starting. - a. Disconnect the positive lead from the starter (insulate lead so it can not touch metal frame). - b. Move the operation selector switch on the engine control to "RMT". - c. Move the test transfer switch to "TEST." "Fault" or "overcrank" lamp on engine control should light at the end of crank period (usually factory set at 75, ±15 seconds). - d. Move test transfer switch to "NORMAL." - e. Move the generator set operation selector switch to "STOP." - f. Reconnect positive lead to starter. - g. Move generator set operation selector switch to "RMT." #### 2. Three-wire starting. - a. Disconnect positive start lead from the start solenoid or starter. - b. Move the operation selector switch to "NOR-MAL." - c. Move test transfer switch to "TEST." "Over-crank" lamp on automatic transfer switch should light at end of crank period (usually factory set at 75, ±15 seconds). - d. Move test transfer switch to "NORMAL." - e. Move the operation selector switch to "STOP" and push the "PUSH TO RESET" button (overcrank lamp should go out). - f. Reconnect positive lead to starter or start solenoid. - g. Move the operation selector switch to "NOR-MAL." #### **Starting Test** - 1. Two-wire starting. - a. Move selector switch on engine control to "RUN." Generator set should start and run. - b. Move selector switch to "RMT." Generator set should stop. #### 2. Three-wire starting - a. Move the operation selector switch on 2 to 3 wire converter to "HAND CRANK." - b. Push start button on generator set control. Generator set should start and run. - c. Move the operation selector switch from "HAND CRANK" to "STOP." Generator set should stop. - d. Move the operation selector switch to "NOR-MAL." Generator set should not start. #### **Test Without Load** - Make sure the load selector switch is poisitoned at "WITHOUT LOAD." - Move test transfer switch to "TEST." Generator set should start and run. - 3. Move test transfer switch to "NORMAL." Generator set should stop. #### **Exercise Without Load (if equipped with exerciser)** - Make sure the load selector switch is positioned at "WITHOUT LOAD." - 2. Align day for exercise on spoked wheel with day pointer. - Turn the 24-hour dial clockwise until the pointer is between the two pins. The generator set should start and run, but not assume the load. - 4. Turn the dial clockwise until the outside pin passes the pointer. Generator set should stop. - 5. Reset the exerciser for the correct time and day. #### **Test Transfer With Load** - 1. Move the load selector switch to "WITH LOAD." - 2. Move test transfer switch to "TEST." Generator set should start after time delay, (the load will be transferred to the generator), and light the red "emergency" lamp (if equipped with lamps). - 3. Check operation of the AC meter(s) on the meterlamp panel (if equipped with meters). - 4. Move the test transfer switch to "NORMAL." Transfer switch should retransfer the load to line and stop engine after duration of time delays. #### **Battery Voltage Lamps (if equipped)** 1. Remove the battery charger module 6. Low battery lamp "LO BAT VOLT" should light within 60 seconds. The transfer switch line terminals must be energized and the battery must be connected to the automatic transfer switch. 2. Replace battery charger module 6. Low battery voltage lamp should go out within 60 seconds. #### **Relay Control Accessory Groups** #### **Check Switch Positions** - 1. Engine Operation Selector Switch (two-wire starting). Move the operation selector switch on the generator set engine control to "STOP." - 2. Move the operation selector switch on the control accessory panel to "NORMAL." - 3. Move test transfer switch to "NORMAL." #### **Connect AC Line** Connect the AC normal line to the automatic transfer switch. The transfer switch should transfer the load to the line and light the green "NORMAL" lamp (if equipped with lamps). #### Connect the Battery Connect the starting battery to the generator set observing correct polarity. #### **Test Overcrank Function** - 1. Two-wire starting - a. Disconnect the positive lead from the starter (insulate lead so it cannot touch metal frame). - b. Move the engine operation selector switch on the engine control to "RMT." - c. Move the test transfer switch to "TEST." Fault or overcrank lamp on engine control should light at end of crank period (usually factory set at 75, ±15 seconds). - d. Move test transfer switch to "NORMAL." - e. Move the engine operation selector switch on engine control to "STOP." - f. Reconnect the positive lead to starter. - g. Move the engine operation selector switch on engine control to "RMT." #### 2. Three-wire starting - a. Disconnect positive start lead from the starter or start solenoid (insulate lead so it cannot touch metal frame). - b. Move operation selector switch on control accessory panel to "NORMAL." - c. Move test transfer switch to "TEST." Overcrank lamp on automatic transfer switch should light at end of crank period (approximately 45 to 90 seconds). - d. Move operation selector switch to "STOP." - e. After about one minute, press the reset button on the cranking limiter. The overcrank lamp should go out. - Reconnect the positive lead
to the starter or start solenoid. - g. Move operation selector switch on control accessory panel to "NORMAL." #### **Starting Test** #### 1. Two-wire starting - a. Move the engine operation selector switch on the engine control to "RUN." Generator set should start and run. - b. Move the engine operation selector switch to "RMT." Generator set should stop. #### 2. Three-wire starting - a. Move operation selector switch on control accessory panel to "OFF." - b. Push start button on generator set control. Generator set should start and run. - c. Push stop switch on generator set control. Generator set should stop. - d. Move operation selector switch on control accessory panel to "NORMAL." #### **Test Without Load** - 1. Move operation selector switch to "TEST." Generator set should start and run. - Move operation selector switch back to "NOR-MAL." Generator set should stop. #### **Exercise Without Load (if equipped with exerciser)** - Align day for exercise on spoked wheel with day pointer. - 2. Turn the 24-hour dial clockwise until the pointer is between the two pins. The generator set should start and run, and the transfer switch should remain in the normal position. - 3. Turn the dial clockwise until the outside pin passes the pointer. The generator set should stop. - 4. Reset the exerciser for the correct time and day (see ADJUSTMENTS section. #### **Test Transfer With Load** - 1. Move test transfer switch to "TEST." The generator set should start (after start time delay if used), run, take over the load, and light the red emergency lamp on the meter-lamp panel (if equipped with normal and emergency lamps). - 2. Check operation of AC meter(s) on meter-lamp panel (if equipped with meters). - 3. Move the test transfer switch to "NORMAL." The transfer switch should retransfer the load to the normal line and stop the generator set (after duration of time delays if used). ### DESCRIPTION #### **MODEL NUMBER** Onan uses a coded model number to describe the complete transfer switch. When corresponding with Onan concerning your transfer switch, be sure to include its model and serial number. It is also advisable to keep a record of modifications to the transfer switch. A breakdown of a typical transfer switch model number follows: - Identifies this model as an OT Series transfer switch. - 2. The third letter describes the number of poles being switched. It also tells if the neutral, or grounded conductor, is switched. - This letter identifies the starting circuit for automatic transfer switches, or identifies the transfer switch as nonautomatic. - This letter identifies the cabinet, the auxiliary contacts, and whether or not the programmed transition feature is included. - The current carrying capacity of the transfer switch in continuous amperes. Series OT transfer switches range in size from 100 to 1000 amperes. - 6. The number, or number and letter, between the dash (-) and the slash (/) is a voltage code. For example, a 4 identifies this switch as a 120/208 volt, three phase, four wire switch. This code also contains information on 60 or 50 hertz operation. - and 8. The Specification number. On automatic transfer switches only, these digits identify the Control Accessory Group and the Meter Lamp Panel combination. On nonautomatic transfer switches, these digits will reflect the standard model. - The Specification Letter. This letter advances as significant changes in the design and manufacture of the transfer switches occur. This specification letter is especially important when ordering parts, kits, etc. #### TRANSFER SWITCH The transfer switch does the work of opening and closing the contacts that transfer the load between normal and emergency power. The transfer switch is a pair of multipole, single throw, electromechanical switches, that are mechanically interlocked to prevent simultaneous closing to both power sources. Onan Series OT transfer switches are available with current ratings of 100, 150, 225, 280, 400, 600, 800 and 1000 amperes at rated voltage. The principal parts of the transfer switch are the contact assemblies and the linear actuator. The contact assemblies actually make and break the current flow. When closed to either the normal or emergency power source, these contacts are mechanically held. A mechanical interlock prevents the contact assemblies from closing to both power sources at the same time. The linear actuator moves the contact assemblies from the normal power source to the emergency power source and back again as required. The linear actuator is a linear induction motor that acts upon an actuator rod, which moves the contact assemblies. Operation of the linear actuator is electrical and is initiated automatically with automatic transfer switches. Manual operation of the transfer switch is possible by applying direct manpower to the transfer switch handles. Refer to manual operation in the OPERATION chapter. MOTOR DISCONNECT SWITCH The motor disconnect switch opens and closes the power lead to the linear actuator. The switch has two positions; UP for automatic operation and DOWN for manual operation. The motor disconnect switch is located on the auxiliary contact cover as in Figure 4. #### **Switching Poles** Series OT transfer switches are multipole switches. A multipole switch is one that opens and closes more than one current path, or pole, with a common switching means. Series OT transfer switches are available with the following switching pole combinations: - 1. 2 or 3 pole, with a neutral block. - 2. 3 pole, single phase, including overlapping switched neutral. - 4 pole, three phase, including overlapping switched neutral. #### **Switched Neutral** Whenever the neutral, or grounded conductor, is switched in a Series OT transfer switch, it is an overlapping switched neutral. This means that the neutral pole has a make before break switching action. A second, separate linear actuator and pair of manual operator handles are used as the switching means. #### **Programmed Transition** Programmed transition is an optional feature of Onan Series OT transfer switches. Programmed transition is the capability of the transfer switch to assume a mid-transition position, for an adjustable interval of time, when the load is neither connected to the normal power source nor to the emergency power source. This feature allows residual voltages in a motor load to decay to an acceptable level before transition is completed. The length of time that the transfer switch is in the midposition can be adjusted from 0.5 to 5 seconds. The proper adjustment is a function of the motor and its connected load. See the ADJUSTMENTS section. #### **Auxiliary Contacts** Auxiliary contacts are provided on both the normal and emergency side of the transfer switch. They are located as in Figure 4, and are actuated by the operation of the transfer switch during transfer and retransfer. The auxiliary contact current ratings are: 25 amps at 125, 250, or 480 VAC; 1 horsepower at 125 VAC; 2 horsepower at 250 or 480 VAC; and a pilot duty rating of 750 VA at 277 VAC maximum. #### **METER LAMP PANEL** Located on the left side of the transfer switch, the meter lamp panel supports a combination of meters and indicating lamps that can be read without opening the cabinet door(s). The specific combination of meters and indicating lamps that are included will vary with the application. A typical meter lamp panel is illustrated in Figure 9. A brief description of all possible individual meters and indicating lamps follow. #### **Meters** A **Direct Current Charge Ammeter** is included with the meter lamp panel on transfer switches equipped with a battery charging circuit. The ammeter indicates the battery charge current rate in amperes. Float charging occurs whenever the normal power source is available. The AC Voltmeter measures the line to line voltage of the generator output. The AC Ammeter measures the line currents of the generator output. A Voltmeter-Ammeter Selector Switch has three positions for reading line currents and line to line voltages, and an OFF position. The **Frequency Meter** indicates the frequency or cycles per second, of the generator output in hertz. A **Running Time Meter** records the time that the generator set has run in hours and tenths of an hour. #### **Indicating Lamps** There are five possible indicating lamps. Two of them indicate the transfer switch position. A green lamp marked **NORMAL** will be lit when the normal power source is supplying the load. A red lamp marked **EMERGENCY** will be lit when the emergency power source is supplying the load. These two indicating lamps indicate the position of the transfer switch only. The remaining three indicator lamps are warning lamps. If any of these lamps light, corrective action is required. The **OVERCRANK** indicator lamp is used on Series OT automatic transfer switches with a three-wire starting circuit. This lamp will light when the electric generating set has failed to start within the time limit established by the cranking limiter. For corrective action, see the OPERATION chapter. The high battery voltage and low battery voltage indicating lamps, marked **HI BAT VOLT** and **LO BAT VOLT**, indicate the engine starting battery voltage is outside normal limits. These lamps will be used on Series OT transfer switches equipped with a battery voltage sensor. FIGURE 6. TYPICAL MODEL AUTOMATIC TRANSFER SWITCH, 100-280 AMPERES #### STARTING CIRCUITS One of the basic supervisory functions of an automatic transfer switch is to send start and stop signals to the electric generating set. The standing circuit function requires the automatic transfer switch to be compatible with the starting circuit of the electric generating set. The starting circuits available in Series OT automatic transfer switches are: two-wire twelve volts, two-wire twenty-four volts, and three-wire twelve volts. #### **Two-Wire Starting Circuits** Although the logic is much more
involved, the operation of a two-wire starting circuit can be thought of as a simple single pole, single throw switch. A closed switch signals the electric generating set to start and run. An open switch signals the electric generating set to stop. The starting battery of the electric generating set provides the operating voltage. Accordingly, the OT Series of automatic transfer switches includes twelve and twenty-four volt models with two-wire starting circuits. #### **Three-Wire Starting Circuits** The end result of the three-wire starting circuit logic is similiar to a single-pole double throw switch. A common is closed to one side to send a start signal. The common is closed to the opposite side to send a stop signal. An automatic transfer switch that is a three-wire starting model will have additional supervisory components. See Control Accessory Group, three-wire. #### **CONTROL ACCESSORY GROUP** The control accessory group, in Series OT automatic transfer switches, executes the supervisory functions of sensing, timing, logic, and others. The specific functions that are included in the control accessory group depend on the requirements of the application. Accordingly, several control accessory groups are possible, each with different combinations of functions and features. A control accessory group consists of solid-state circuitry, relays, and other control devices; mounted on the control accessory panel. The control accessory groups in Series OT automatic transfer switches can be divided in two classes: solid-state control accessory groups and relay control accessory groups. Both classes, solid-state and relay, can be further subdivided by starting circuits, either two-wire or three-wire. The result is solid-state control accessory groups for either two-wire or three-wire starting circuits and relay control accessory groups for either two-wire or three-wire starting circuits. See Figure 7. FIGURE 7. CONTROL ACCESSORY GROUPS # Solid-State, Two-Wire Control Accessory Groups The majority of supervisory functions in the solid-state control accessory groups are executed by solid-state plug-in modules. The solid-state groups may include, as the application requires, voltage sensing modules, timing modules, a control voltage module, and starting battery modules. The remaining supervisory functions are provided by control switches, and an exerciser clock. All control accessory group components are mounted on the control accessory panel. Figure 6 illustrates a typical solid-state control accessory panel. #### **AC VOLTAGE SENSORS** Solid-state voltage sensor modules, illustrated in Figure 8, monitor the voltage of both the normal line and the generator output. The normal line may be monitored for both undervoltage and overvoltage conditions. The generator output is monitored for undervoltage conditions only. FIGURE 8. VOLTAGE SENSORS Voltage sensor modules have two adjustments. One adjustment sets the pickup voltage. The pickup voltage scale is graduated from 90 to 140 volts, based on a nominal 120 volt system. For other voltage systems, the scale must be corrected using the multiplying factor given in Table 3. The second adjustment is the dropout differential. The dropout differential is a percentage, adjustable from 5 to 20%, of the pickup voltage. The dropout differential is subtracted from the pickup voltage to arrive at the dropout voltage. The dropout voltage is always lower than the pickup voltage by the dropout differential. **TABLE 3. VOLTAGE FACTORS** | VOLTAGE | MULTIPLYING FACTOR | |---------|--------------------| | 120 | 1.0 | | 208 | 1.73 | | 240 | 2.0 | | 480 | 4.0 | | 600 | 5.0 | Line Voltage Sensors: The normal line can be sensed for undervoltage and overvoltage using voltage sensor modules. When a line undervoltage or overvoltage condition exists, as defined by the pickup voltage setting and dropout differential, the voltage sensor module initiates the start signal sequence. When line voltage returns to normal, the voltage sensor module initiates the stop signal sequence. Table 4 gives the range of adjustment and function of voltage sensors in both undervoltage and overvoltage applications. **TABLE 4. LINE VOLTAGE SENSING** | GE SENSING | |---| | Generator Set Stops (pick-up voltage) | | 75 to 100% of normal voltage | | GE SENSING | | Generator Set Stops
(drop-out voltage) | | 5 to 20% below
pick-up voltage | | | One voltage sensor module is required for each phase of the line being sensed. For example, a three phase line being sensed for undervoltage and overvoltage between all phases would require six voltage sensor modules in the control accessory group. Generator Voltage Sensor. The generator output voltage is sensed for an undervoltage condition only. across two lines, single phase. One voltage sensor module is used. The pickup voltage setting is the generator output voltage at which transfer of the load to the generator set is allowed to occur. If the generator output voltage falls below the dropout voltage and line voltage is present, the voltage sensor initiates retransfer of the load to the normal power source. #### TIMING MODULES The supervisory functions of the control accessory group may include several adjustable time delays before or after an event. For example, to prevent the generator set from starting when power interruptions of very short duration occur, a delay can be timed that disregards the short interruption. The solid-state modules that provide timing functions include: the Transfer-Retransfer module, and the Start-Stop module. Table 5 gives the duration of the time delays and the factory settings. **TABLE 5. ADJUSTABLE TIME DELAYS** | TIME DELAY | TIME RANGE | FACTORY SETTING
(if any) | |------------|------------------|-----------------------------| | Starting | 0.1 to 15 sec. | 2.5 sec. | | | 0.5 to 615 sec.* | | | Transfer, | 0.1 to 15 sec. | 2.5 sec. | | Retransfer | 0.5 to 30 min. | 10 min. | | Stopping | 0.1 to 10 min. | 5.0 min. | | Preheat | 5 to 90 sec. | 60 sec. | ^{*} Programmable start-stop timer. Transfer-Retransfer Module: The solid-state transfer-retransfer module provides adjustable time delays before the events of transfer and retransfer are allowed to occur. The transfer time delay begins at the moment that the generator output voltage reaches the pickup voltage setting of the generator voltage sensor. At the end of the transfer delay, the transfer switch is allowed to operate, transferring the load to the emergency power source. The purpose of the very brief transfer delay is to allow the electric generating set to stabilize before the load is applied. The retransfer time delay begins at the moment that normal line voltage returns. At the end of the retransfer time delay, the transfer switch is allowed to retransfer the load to the normal power source. The purpose of the longer retransfer time delay is to allow the normal power source to stabilize before retransfer. Start-Stop Module: The solid-state start-stop module provides adjustable time delays before the electric generating set is allowed to start or stop. The start time delay begins at the moment of normal power interruption. If the duration of the power interruption exceeds the start time delay, the start signal is sent to the electric generating set. The purpose of the start time delay is to prevent the generator set from starting when power interruptions of very short duration occur. The stop time delay begins timing when the load is retransferred to the normal power source. At the end of the stop time delay, the stop signal is sent to the generator set. The purpose of this time delay is to allow the generator set to cool down while running at no load. #### **CONTROL VOLTAGE MODULE** A solid-state control voltage module supplies components of the control accessory group with their voltage requirements. There are two possible control voltage modules. Both use the engine starting battery as a source. If the battery is twelve volts, the module will be twelve volts. If the starting battery is twenty-four volts, the module will convert twenty-four to twelve volts. #### **BATTERY CHARGER MODULE** The solid-state battery charger module is voltage regulated to float charge the battery continuously without damage to the battery. The maximum output of the charger is two amperes. As the battery approaches full charge, the charging current tapers to zero amperes or to the steady state load on the battery. The battery charger operates from the normal power source only. It will not charge during emergency operation. The battery charging module is protected by a fuse mounted on the control accessory panel. The battery charger module can be used with either lead acid or nickel cadmium batteries. #### **BATTERY VOLTAGE SENSOR MODULE** The solid-state battery voltage sensor, either 12 or 24 volt, monitors the battery charging system. If the battery charger is exceeding a safe float voltage, the sensor lights the high battery voltage indicating lamp. If the battery charger allows the battery voltage to drop below a safe limit, the sensor lights the low battery voltage indicating lamp. #### **CONTROL SWITCHES** The control switches included in the control accessory group allow the operator to select the different operations as they are required. Solid-state control accessory groups always include the Test Transfer Switch and the With or Without Load Selector Switch. Some solid-state control accessory groups may also include the Retransfer Selector Switch and the Push to Retransfer Switch. Test Transfer Switch: The test transfer switch is used to simulate a power interruption for test purposes. The test transfer switch has two positions; normal and test. In the NORMAL position, the transfer switch is set for automatic operation. The TEST position sends a start signal to the electric generating set. With or Without Load Selector Switch: This two
position switch determines whether or not the automatic transfer switch will connect the load to the electric generating set during test and exercise periods. The two positions are WITH LOAD and WITHOUT LOAD. The position of the load selector switch does not affect normal operation. Retransfer Selector Switch: The retransfer selector switch sets the operation of the retransfer function only. The switch has two positions. In the automatic position, AUTO, the transfer switch will retransfer the load to the normal source without operator involvement. In the MANUAL position, the transfer switch will not retransfer until retransfer is initiated manually by the operator. Push to Retransfer Switch: This momentary switch provides the means to manually initiate retransfer of the load to the normal power source when the retransfer selector switch is in the manual position. #### **EXERCISER CLOCK** The exerciser clock initiates the starting of the electric generating set at set times. The electric generating set will run, or exercise, for preset intervals. The exerciser clock is a fourteen day, twenty-four hour clock. A large dial divides the twenty-four hour day into intervals of fifteen minutes each. A smaller spoked dial divides two weeks into one day segments. Exercise periods are set by the placement of trip pins in the dial faces. See Adjustments. The normal source powers the exerciser clock. Reset the clock after interruptions of the normal power source. #### **CONTROL ACCESSORY PANEL** The control accessory panel is the swinging panel directly behind the locking cabinet door. The control devices of the control accessory group are mounted on the panel. See Figure 9. The solid-state control accessory panel has three printed circuit board racks with positions 1 through 18 for plug-in modules. All the following modules used in automatic transfer switches are listed after the number position they occupy in the control accessory panel. Note that some positions list more than one module. If the automatic transfer switch is single-phase, for example, only one line undervoltage sensor is used and it is located in position 1. Positions 2 and 3 will have blank modules. | Position | Module | |----------|-----------------------------| | 1 | Line undervoltage sensor | | | (1 phase or 3 phase) | | 2 | Line undervoltage sensor | | | (3 phase), bypass, or blank | | 3 | Line undervoltage sensor | | | (3 phase), bypass, or blank | | 4 | Generator undervoltage | | | sensor (1 phase) | | 5 | 12 volt module, or 24 to | | | 12 volt converter | | 6 | 12 or 24 volt battery charger or blank | |----|--| | 7 | Start-Stop or bypass | | 8 | Transfer-Retransfer or bypass | | 9 | 2 or 3 wire converter or blank | | 10 | 12 or 24 volt battery voltage | | | sensor or blank | | 11 | Blank | | 12 | Blank | | 13 | Line overvoltage sensor | | | (1 phase or 3 phase) or blank | | 14 | Line overvoltage sensor | | | (3 phase) or blank | | 15 | Line overvoltage sensor | | | (3 phase) or blank | | 16 | Preheat or blank | | 17 | Blank | | 18 | Blank | The control accessory panel can be swung open to allow access to the transfer switch. Before opening the control accessory panel: (1) The operation selector switch must be moved to STOP, located on the two to three-wire converter module with three-wire starting, or, on the engine control with two-wire starting; and (2) The control accessory panel disconnect plug must be removed, removing AC line voltage from the control accessory panel. WARNING If the operation selector switch is not moved to "STOP" before the disconnect plug is removed, the generator set will start and energize the transfer switch's generator side. Because the disconnect plug does not deenergize the transfer switch, the transfer switch presents a serious shock hazard unless AC power is removed from the automatic transfer switch. # Solid-State, Three-Wire Control Accessory Groups A solid-state, three-wire control accessory group is built on the foundation of a solid-state, two-wire control accessory group. As a result, all of the features in the preceding description on two-wire groups can be found in three-wire groups. In addition, solid-state, three-wire control accessory groups will always include a two to three wire converter module. If the application requires, a preheat time delay module may also be included. ### TWO TO THREE-WIRE CONVERTER MODULE This solid-state module is used to convert a two-wire starting control accessory group into a three-wire starting control accessory group. The major features of the two to three-wire converter are: an operation selector switch, the cranking limiter, and the cranking limiter reset. See Figure 9. FIGURE 9. 2 TO 3 WIRE CONVERTER MODULE Operation Selector Switch: The operation selector switch controls the operation of the three-wire starting electric generating set. The operation selector switch has three positions: STOP, HAND CRANK, and NORMAL. STOP: Shuts down the generator set and prevents it from starting. Use this position when servicing the generator set. HAND CRANK: Prevents the automatic transfer switch from starting the generator set but allows starting and stopping at the generator set. Use this position for generator set maintenance. NORMAL: Allows the generator set to start and assume the load if a power interruption occurs. This is the normal operating position. Cranking Limiter: The cranking limiter is a protective circuit that limits the time the engine starter motor is engaged. If the electric generating set doesn't start within the adjustable time limit, the cranking limiter opens the starting circuit disengaging the engine starter motor. The OVERCRANK indicating lamp will be lit. Cranking Limiter Reset: When the cranking limiter opens the starting circuit, the cranking limiter reset will restore the cranking limiter, after the engine starting problem has been resolved. See overcrank in the Operation Chapter. #### PREHEAT TIME DELAY MODULE The solid-state preheat time delay module may be used with three-wire starting diesel engines to provide a preheat function. The preheat module prevents the engine starter motor from engaging until the adjustable preheat time delay is complete. #### Relay, Two-Wire, Control **Accessory Groups** Relay control accessory groups use adjustable time delay relays to provide the timing functions required by the application. Relay groups may include, as the application requires: solid-state voltage sensing modules, time delay relays, control switches, a solidstate battery charger, and an exerciser clock. The components of the control accessory group are mounted on the hinged control accessory panel as illustrated in Figure 10. FIGURE 10. RELAY, TWO-WIRE, CONTROL ACCESSORY **PANEL** #### **AC VOLTAGE SENSORS** Relay control accessory groups use the same solidstate voltage sensor modules for line undervoltage and line overvoltage sensing as the solid-state control accessory groups. See the preceding description of AC line voltage sensors. #### **TIME DELAY RELAYS** Adjustable time delay relays provide the timing functions in relay control accessory groups. The time delays that the application may require are: a time delay before starting, a time delay before stopping, a time delay before transfer, and a time delay before retransfer. Table 6 gives the time ranges of the adjustable time delay relays. **TABLE 6. ADJUSTABLE TIME DELAYS** | TIME
DELAY | TIME
RANGE | SUGGESTED
SETTING | |---------------|---------------|----------------------| | Starting | 1 to 300 sec. | 1 to 3 sec. | | Transfer | 1 to 300 sec. | 5 to 10 sec. | | Retransfer | 2 to 60 min. | 10 min. | | Stopping | 2 to 60 min. | 5 min. | | Preheat | 1 to 300 sec. | 60 sec. | Time Delay Before Starting: This time delay relay is used to prevent the electric generating set from starting when short duration interruptions of the normal power source occur. If the duration of the normal power interruption exceeds the setting of this time delay relay, the start signal will be sent to the electric generating set. Time Delay Before Stopping: This time delay relay is used to allow the electric generating set to run at no load after retransfer. This running period at no load helps cool the electric generating set. The setting of this time delay relay is the length of time after retransfer that the electric generating set will run before stopping. Time Delay Before Transfer: When the electric generating set reaches pickup voltage, the transfer time delay relay will retard the operation of the transfer switch for the length of time delay setting. This usually brief delay allows the electric generating set to stabilize before load is applied. Time Delay Before Retransfer: When the normal power source returns after an interruption, it will sometimes fluctuate before it becomes stable. The retransfer time delay relay will keep the transfer switch from retransferring the load to the restored normal source for the duration of its setting. #### **BATTERY CHARGER** The solid-state battery charger has a maximum twoampere output and is voltage regulated to "float charge" the battery continuously without damage to the battery. As the battery approaches full charge, the charging current automatically tapers to zero amperes or to steady-state load on the battery (keeping starting batteries fully charged). The battery charger can be used for either lead acid or nickel cadmium batteries. The battery charger circuit is protected by a fuse. If the battery charger fails to charge, be sure to check the fuse. #### **CONTROL SWITCHES** The control switches on the control accessory panel allow the operator to select operation functions. The control switches with a two-wire starting, relay control accessory group are the operation selector switch and the test transfer switch. See the Operation chapter. **Operation Selector Switch:** The operation selector switch is a three position
switch: NORMAL, STOP, and TEST. NORMAL: In this position, the automatic transfer switch will respond to the interruption and return of the normal power source, automatically. STOP: In this position, the automatic transfer switch will not respond to a normal power interruption. TEST: This position is used to start the electric generating set without applying the load. Test Transfer Switch: This two position switch is used to test the electric generating set with the load applied. The two positions are NORMAL and TEST. #### **EXERCISER CLOCK** The exerciser clock initiates the starting of the electric generating set at set times. The electric generating set will run, or exercise, for preset intervals. The exerciser clock is a fourteen day, twenty-four hour clock. A large dial divides the twenty-four hour day into intervals of fifteen minutes each. A smaller spoked dial divides two weeks into one day segments. Exercise periods are set by the placement of trip pins in the dial faces. See Adjustments. #### **CONTROL ACCESSORY PANEL** The control accessory panel for a typical two-wire starting, relay control accessory group is illustrated in Figure 10. The control accessory panel can be swung open to allow access to the transfer switch. Before opening the control accessory panel: (1) The engine operation selector switch (on the engine control) must be moved to STOP, and (2) The control accessory panel disconnect plug must be removed, removing AC line voltage from the control accessory panel. If the engine operation selector switch is not moved to "STOP" before the disconnect plug is removed, the generator set will start and energize the transfer switch's generator side. Because the disconnect plug does not deenergize the transfer switch, the transfer switch presents a serious shock hazard unless AC power is removed from the automatic transfer switch. # Relay, Three-Wire Control Accessory Groups The three-wire starting relay control accessory groups are similar to the two-wire relay groups (see the preceding description) except for the operation selector switch and the addition of a cranking limiter. If the application requires, a preheat time delay relay may also be included. See Figure 11. FIGURE 11. RELAY, THREE-WIRE, CONTROL ACCESSORY PANEL **Operation Selector Switch:** The operation selector switch in a three-wire relay control accessory group has four positions: NORMAL, TEST, STOP, and OFF. See the Operation chapter. NORMAL: In this position, the automatic transfer switch is set for automatic operation. TEST: This position is used to start the electric generating set without applying the load. STOP: In this position, the automatic transfer switch will not operate nor will the electric generating set start. The engine starter motor can be engaged using the engine control, but the engine will not start. OFF: In this position, the electric generating set can be started at the engine control but the automatic transfer switch will not operate. Cranking Limiter: The cranking limiter in three-wire, relay control accessory groups is located in the upper right-hand corner of the control accessory panel as illustrated in Figure 11. The cranking limiter is an electrically operated thermal relay that protects the engine cranking circuit. The relay is energized when the start signal is sent and remains energized until the electric generating set starts. If the engine does not start in forty-five to ninety seconds, the heating element in the relay opens the starting circuit. It can be reset by allowing about one minute to cool, and then pushing the reset. #### TIME DELAY FOR PREHEAT If the application requires, a time delay relay may be included that delays cranking of the deisel engine for preheating. #### **CONTROL ACCESSORY PANEL** A typical control accessory panel for a three-wire, relay control accessory group is illustrated in Figure 11. The control accessory panel can be swung open to allow access to the transfer switch. Before opening the control accessory panel: (1) The operation selector switch must be moved to STOP, located on the control accessory panel, and (2) The control accessory panel disconnect plug must be removed, removing AC line voltage from the control accessory panel. WARNING If the operation selector switch is not moved to "STOP" before the disconnect plug is removed, the generator set will start and energize the transfer switch's generator side. Because the disconnect plug does not deenergize the transfer switch, the transfer switch presents a serious shock hazard unless AC power is removed from the automatic transfer switch. ### **OPERATION** #### **AUTOMATIC OPERATION** A Series OT automatic transfer switch is set for automatic operation by placing the following control switches in the positions given. The electric generating set must also be set for automatic operation. ### SOLID-STATE, TWO-WIRE, CONTROL ACCESSORY GROUPS Test Transfer Switch - NORMAL Retransfer Selector Switch - AUTO Motor Disconnect Switch - UP ### SOLID-STATE, THREE-WIRE, CONTROL ACCESSORY GROUPS Operation Selector Switch - NORMAL Test Transfer Switch - NORMAL Retransfer Selector Switch - AUTO Motor Disconnect Switch - UP ### RELAY, TWO-WIRE, CONTROL ACCESSORY GROUPS Operation Selector Switch - NORMAL Test Transfer Switch - NORMAL Motor Disconnect Switch - UP ### RELAY, THREE-WIRE, CONTROL ACCESSORY GROUPS Operation Selector Switch - NORMAL Test Transfer Switch - NORMAL Motor Disconnect Switch - UP #### RETRANSFER, MANUALLY INITIATED The retransfer of the load, from the emergency to the normal power source, can be delayed until initiated manually by the operator. This manually initiated retransfer operation is possible only with solid-state control accessory groups that include the Retransfer Selector Switch. This procedure allows the operator to plan for the momentary interruption of service to the load on retransfer. The procedure is: - Place the Retransfer Selector Switch in the MANUAL position. The automatic transfer switch will not retransfer automatically when the normal power source returns. - 2. Manually initiate retransfer by pushing the Push to Retransfer Switch. If the emergency power source should fail while the Retransfer Selector Switch is in the MANUAL position, a bypass circuit will automatically retransfer the load to the normal power source, if available. #### **TEST OPERATION** ### SOLID-STATE CONTROL ACCESSORY GROUPS - 1. Place the With or Without Load Selector Switch in the desired position. - 2. Move the Test Transfer Switch to TEST. - 3. At end of test period, return the Test Transfer Switch to NORMAL. During test operation, switching from WITHOUT LOAD to WITH LOAD will cause the electric generating set to stop, go through the start time delay, start, run, and go through the transfer time delay before assuming the load. #### **RELAY CONTROL ACCESSORY GROUPS** #### Test With Load: - 1. Move the Test Transfer Switch to TEST. - 2. Return the Test Transfer Switch to NORMAL at the end of test period. #### **Test Without Load:** - 1. Move the Operation Selector Switch to TEST. - 2. Return the Operation Selector Switch to NOR-MAL at the end of the test period. #### **EXERCISE** Onan recommends running the electric generating set for a minimum of thirty minutes, with at least fifty percent load if possible, once each week. Automatic transfer switches with an exerciser clock can be set to start and run the electric generating set at selected times automatically, see *Adjustments*. If the normal power source should be interrupted while the electric generating set is exercising without load, the automatic transfer switch will transfer the load. **SOLID-STATE CONTROL ACCESSORY GROUPS** - 1. Set the exerciser clock to start the electric generating set at the desired time. - 2. Place the With or Without Load Selector Switch in the desired position. When the motor disconnect switch is moved from manual to automatic operation, an automatic transfer switch will return to the active power source in this order of preference: first, the normal power source; second, the emergency power source. The operator must put the transfer switch in its preferred position, manually, before moving the motor disconnect switch to automatic operation position. warning The rapid movement of the manual operator handles may cause personal injury. An automatic transfer switch must be placed in its preferred position, manually, before moving the motor disconnect switch to automatic operation. #### **RELAY CONTROL ACCESSORY GROUPS** 1. Set the exerciser clock to start the electric generating set at the desired time. The electric generating set will run without load. #### **OVERCRANK** An overcrank condition exists when the electric generating set has not started within the time limit set by the cranking limiter. To restore the automatic transfer switch starting circuit: - 1. Correct the engine starting problem. - 2. Push the cranking limiter reset. #### MANUAL OPERATION An operator can manually transfer or retransfer a Series OT transfer switch using direct manpower. The transfer switch is equipped with manual operator handles for this purpose. Operators must follow the procedure that matches the description of their transfer switch. WARNING Use extreme care when operating the transfer switch manually. High voltage on transfer switch terminals presents a serious personal injury hazard. # Single Actuator, 100-280 Ampere, Transfer Switch - 1. Move the motor disconnect switch to the DOWN, manual operation position. - 2. Pull either manual operator handle in the desired direction; down for emergency, up for normal. - 3. Automatic Transfer Switch Return the transfer switch to its preferred position. - 4. Return the motor disconnect switch to the UP, automatic operation position. # Single Actuator, 400-1000 Ampere, Transfer Switch - Move the motor disconnect switch to the DOWN, manual operation position. - Transfer or retransfer, following these
steps: Transfer, from normal power to the emergency power source: - a. Pull the upper manual operator handle down. - b. Push the lower manual operator handle down. Retransfer, from emergency power to the normal power source: - c. Pull the lower manual operator handle up. - d. Push the upper manual operator handle up. - 3. Automatic Transfer Switches Return the transfer switch to its preferred position. - 4. Return the motor disconnect switch to the UP, automatic operation position. #### **Two Actuator Transfer Switches** (Switched Neutral) Manual operation of a transfer switch with two linear actuators, those having a switched neutral pole, is different than a single actuator transfer switch. The procedure that follows will overcome the mechanical interlock which prevents disconnecting the neutral pole while the power poles are connected to either power source. The mechanical interlock also prevents the power poles from closing to either power source before the neutral pole is closed to that source. Automatic Transfer Switches - Be sure to return an automatic transfer switch to its preferred position before resuming automatic operation. #### TRANSFER, MANUAL The procedure for manual transfer, from the normal power source to the emergency power source, is: 1. Move the motor disconnect switch to the DOWN, manual operation position. See Figure 12. FIGURE 12. Automatic operation of the transfer WARNING switch can occur, causing personal injury, if the motor disconnect switch is not in the DOWN, manual operation position. 2. Pull the top power handle down, as shown in Figure 13, disconnecting the power poles from the normal power source. **POLES** **HANDLE** **DOWN** FIGURE 13. 3. Pull the top neutral pole handle all the way down. as shown in Figure 14, connecting the load neutral to the emergency neutral and disconnecting it from the normal power source. FIGURE 14. 4. Push the lower power pole handle down, as in Figure 15, connecting the load to the emergency power source. This completes the manual transfer switching sequence. FIGURE 15. #### RETRANSFER, MANUAL **POLES** HANDLE **DOWN** The procedure for manual retransfer, from the emergency power source to the normal power source, is: With the motor disconnect switch in the DOWN. manual position: 1. Pull the lower power pole handle up, as illustrated in Figure 16, disconnecting the load from the FIGURE 16. emergency power source. **POLES** HANDLE UP 2. Pull the lower neutral pole handle all the way up, as shown in Figure 17, connecting the load neutral to the neutral of the normal power source and disconnecting it from the emergency power source. FIGURE 17. FIGURE 18. - 3. Push the lower power pole handle up, as in Figure 18, connecting the load to the normal power source. This completes the manual retransfer switching sequence. - 4. Being sure that the transfer switch is in its preferred position, return to automatic operation by moving the motor disconnect switch to the UP position. ### **ADJUSTMENTS** # LATCH AND LATCH PIN ADJUSTMENT If the control accessory panel will not close because the latch is above or below the latch pin, perform the following. - 1. Open cabinet door of automatic transfer switch. - 2. Move operation selector switch to "STOP" (in cabinet for three-wire starting, on engine control for two-wire starting) and disconnect starting battery. WARNING High voltage on transfer switch terminals presents a serious personal injury - 3. Remove the twist-lock disconnect plug. - 4. Completely open the control accessory panel. - 5. 100 through 280 ampere OT: Remove the one - screw on top and one screw on bottom from inside meter panel flange. Open meter panel. - Loosen the latch pin and move the latch pin up or down in the slot as necessary (Figure 19). Then tighten. - 100 through 280 ampere OT: Close the meter panel and reinstall the two screws removed in Step 6. - 8. Close the control accessory panel. If more adjustment is necessary, repeat Steps 5 through 8. - 9. Reconnect the twist-lock disconnect plug. - Restore AC line voltage to the automatic transfer switch. - Move operation selector switch to "NORMAL" (in cabinet for three-wire starting) or "RMT" (on engine control for two-wire starting), whichever applies. - 12. Close cabinet door. - 13. Reconnect starting battery. FIGURE 19. ADJUSTMENT OF LATCH PIN #### **EXERCISER CLOCK** - Open the cabinet door of the automatic transfer switch. - 2. Move the operation selector switch (on engine control for two-wire starting, in cabinet for three-wire starting) to "STOP." - Install a trip pin (left-hand thread) in the inside row of holes on the large dial for the time of day you want the generator to start. See Figure 20. NOTE: Trip pins are left-hand thread. FIGURE 20. EXERCISER CLOCK Place a trip pin (left-hand thread) in the outside row of holes on the large dial to stop the generator set. Onan recommends settings which operate the generator set for at least 30 minutes each week. Exercising for one long period is better than several short periods. - 5. Install a trip (left-hand thread) in the small spoked wheel for every day no exercise is desired. - 6. Rotate the large dial **clockwise** until the correct time is correctly aligned with the time pointer. - 7. Turn the small spoked wheel **counterclockwise** until the correct day aligns with the pointer. Sixteen trip pins are supplied with the clock. Store unused pins on the time pointer bracket. - Move the operation selector switch to "RMT" (two-wire starting) or "NORMAL" (three-wire starting) whichever applies. - 9. Close the cabinet door. # TIME DELAYS Solid-State Control Accessory Groups **Start-Stop Time Delay:** Time delay before start is factory adjusted for 2 to 3 seconds. Time delay before stop is factory adjusted for 4.5 to 5 minutes. If other times are desired, use the following procedure: - Open the cabinet door of automatic transfer switch. - 2. Move the load selector switch to "WITH LOAD." - 3. Move test transfer switch to "TEST." - With a stopwatch or watch with a second hand, measure the time until the generator set starts cranking. - 5. Insert a small screwdriver through "START" hole in front panel of start-stop time delay module 7. Turn "START" potentiometer clockwise to increase start time delay or counterclockwise to decrease start time delay. Make adjustments in small increments. - 6. Move test transfer switch to "NORMAL." - 7. Measure time until generator set begins to shut down. - 8. Turn "STOP" potentiometer with the small screwdriver clockwise to increase the stop time delay or counterclockwise to decrease the stop time delay. Make adjustments in small increments. - 9. Repeat Steps 2 through 8 until desired delay times are obtained. - 10. Move the load selector switch to desired position, "WITHOUT LOAD" or "WITH LOAD." Optional Start-Stop Time Delay: For a time delay change of the programmable timer, pull out the time delay module 7 from the control panel and change the switch settings on the side of the printed circuit board for the desired times. Table 7 lists the switch positions for the available time delays. The illustration following shows the module as viewed from the switch (right) side. Example: For a start time delay of 2.4 seconds, close switches 1, 2, and 3, and open switch 4. For a 345-second time delay on stopping, close switches 5, 7, and 8, and open switch 6. FIGURE 21. START-STOP TIME DELAY (BEGIN SPEC B) TABLE 7. PROGRAMMABLE TIME DELAY | | PROGRAMMABLE START — STOP TIMER C SWITCH CLOSED O SWITCH OPEN | | | | | |----------------|---|---|---|----------|---| | | 0 | | | OSITIONS | | | 1 | 2 | 3 | 4 | TO START | 1 | | 5 | 6 | 7 | 8 | TO STOP | 1 | | | | | | TIME | • | | 0 | 0 | С | 0 | 0.5 sec | | | 0 | 0 | 0 | С | 1 0 sec | | | С | 0 | С | 0 | 1 4 sec | | | С | С | С | 0 | 2 4 sec | | | С | 0 | 0 | С | 5 5 sec | | | 0 | 0 | 0 | 0 | 7.9 sec | | | С | С | 0 | С | 9.6 sec | | | С | O | 0 | 0 | 43 sec | | | 0 | 0 | С | С | 62 sec | | | С | С | 0 | 0 | 76 sec | | | С | 0 | С | С | 345 sec | | | С | С | С | С | 615 sec | | | TIME TOL ± 20% | | | | | | Transfer-Retransfer Time Delay: To change the delay time of transfer-retransfer time delay module 8, use the following procedure and refer to illustration following procedure. - Open the cabinet door of the automatic transfer switch. - 2. Move the load selector switch to "WITH LOAD." - 3. Move the test transfer switch to "TEST." The generator will start and run. - 4. With a stopwatch or watch with a second hand, measure the time the red transfer LED on the transfer-retransfer time delay module 8 remains lit. The red LED will turn off after the time delay is complete. If the time delay is correct or time you desire, proceed to Step 6. If not, proceed to Step 5. - Insert a small screwdriver through the "TRANSFER" opening (upper opening) in the front panel of the transfer-retransfer time delay module. Turn clockwise in small increments to increase the time delay, counterclockwise to decrease time delay. - 6. Move the test transfer switch to "NORMAL." - 7. With a stopwatch or watch with a seconds hand, count the number of flashes the bottom green LED makes in 60 seconds (Onan suggests counting for 60 seconds—shorter intervals would give less accuracy for determing time delays). Once retransfer timing is complete, the retransfer LED will turn off and the green LED will remain on for the duration of the generator set stop delay. The following list gives the correlation of pulses to time delays. | Pulses/60 sec | Time Delay (min) | |---------------|------------------| | 50 | 5 | | 25 | 10 | | 17 | 15 | | 13 | 20 | | 10 | 25 | | 8 | 30 | If time delay is correct or time you want, proceed to Step 10. Otherwise, proceed to Step 8. - 8. Insert a small screwdriver through the "RETRANSFER" hole (lower hole) in the front panel of the transfer-retransfer time delay module. Turn clockwise in small increments to increase the time
delay, counterclockwise to decrease the time delay. - 9. Repeat Steps 3 through 8 until the desired time delays are obtained. - 10. Move the selector switch to "WITH LOAD" if you want the generator set to assume load during exercise or tests. - 11. Close the cabinet door. FIGURE 22. TRANSFER-RETRANSFER TIME DELAY **Preheat Time Delay:** The preheat time delay (module 16) for diesel generator sets with 3-wire starting is adjustable from 5 to 60 seconds. To change the delay, follow these instructions: - Open the cabinet door of the automatic transfer switch. - 2. Move the load selector switch to "WITHOUT LOAD." - 3. Move the test transfer switch to "TEST." - With a stopwatch or watch with a second hand, measure the amount of time the small lamp on module 16 (preheat time delay module) lights before engine cranks. - 5. Move the test transfer switch back to "NORMAL." - If time delay for preheat is set as desired, proceed to Step 9. If a different time is desired, proceed to Step 7. - 7. Insert a small screwdriver through the "PREHEAT" hole in the front panel of preheat time delay module 16. Turn potentiometer clockwise to increase preheat time, counterclockwise to decrease delay. Make adjustments in small increments. - 8. Repeat Steps 3 through 7 until desired preheat time is obtained. - 9. Move the load selector switch to desired position, "WITHOUT LOAD" or "WITH LOAD." - 10. Close cabinet door of automatic transfer switch. #### **Relay Control Accessory Groups** **Start, Transfer, and Preheat Time Delays:** All of these time delays require the same adjustment procedures. Settings can range from 1 to 300 seconds. To make settings, perform the following: - Open the cabinet door of the automatic transfer switch. - Turn the knob on the time delay clockwise to increase delay time, counterclockwise to decrease the delay time. See Figure 23. - 3. Close the cabinet door. FIGURE 23. START AND TRANSFER TIME DELAY RELAYS Stop and Retransfer Time Delays: Both of these synchronous motor-driven time delays require the same adjustment procedure. Settings can range from 2 to 60 minutes. To make settings, perform the following: Open the cabinet door of the automatic transfer switch. 2. Set the time delay by turning the adjustment knob in the center of the delay. See Figure 24. The black pointer on the face of the time delay indicates the preset delay. The red pointer indicates the delay time left in operation. 3. Close and lock the cabinet door. FIGURE 24. STOP AND RETRANSFER TIME DELAY RELAYS # OVERCRANK TIME SOLID-STATE CONTROL ACCESSORY GROUPS (THREE-WIRE STARTING ONLY) Overcrank settings are made at the factory for approximately 75 ± 10 seconds cranking. To adjust perform the following. - Remove the positive lead from the generator set's start solenoid or starter. - 2. Open cabinet door of automatic transfer switch. - Move the load selector switch to "WITHOUT LOAD." - Move the operation selector switch to "NOR-MAL." - 5. Move test transfer switch to "TEST." Overcrank lamp on automatic transfer switch should light at end of crank period. Measure the crank time with a stop watch or watch with a second hand. - 6. To change the time, insert a small screwdriver through the "CRANK TIME" hole in the front of the 2 to 3 wire converter module. Turn clockwise to increase the cranking time or counterclockwise to decrease the cranking time. Make adjustments in small increments. - 7. Move test transfer switch to "NORMAL." - 8. Push the "PUSH TO RESET" button on the 2 to 3 wire converter module. - 9. Repeat Steps 5 through 8 until the desired cranking time is obtained. - 10. Move the load selector switch to desired position, "WITHOUT LOAD" or "WITH LOAD." - 11. Close and lock cabinet door. - Reconnect positive lead to generator set's starter or start solenoid. #### **BATTERY FLOAT CHARGE** For the following adjustments, a fully-charged battery, a hydrometer and an accurate voltmeter (1/2 percent accuracy) are needed. Onan recommends float voltages of: 13.3 volts for nominal 12-volt or 26.6 volts for nominal 24-volt lead-acid batteries; 14.0 to 14.5 volts for 10-cell nickel-cadmium batteries, or 28.0 to 29.0 volts for 20-cell nickel-cadmium batteries. Lead-acid battery only: During the first few weeks of operation, the batteries should be checked periodically with a hydrometer. A high specific gravity, bubbling of electrolyte and loss of water indicate excessive float voltage. A drop in specific gravity indicates insufficient float voltage. - Connect the fully-charged battery (verify charge condition with the hydrometer for lead-acid batteries.) - 2. Connect the voltmeter directly to the battery terminals. - 3. Measure the battery voltage. If voltage is above the recommended float voltage, proceed to Step 4. If the voltage is below the recommended float voltage, proceed to Step 6. - 4. Insert a small screwdriver through the hole in the front panel of battery charger module 6. Turn counterclockwise in small increments to decrease the float voltage. - 5. After five minutes, measure the battery terminal voltage again. If voltage is still high, repeat Steps 4 and 5 until voltage stabilizes at the recommended float voltage. Proceed to Step 9. - 6. Note charge current rate on charge ammeter on meter-lamp panel. - 7. Insert a small screwdriver through hole in front panel of battery charger module 6. Turn clockwise in small increments to increase float voltage. Note increase in the charging current on the charge ammeter on the meter-lamp panel. - 8. In approximately one hour or when charge current has decreased to initial value noted in Step 6, recheck battery terminal voltage. Repeat Steps 6 through 8 until the battery terminal voltage stabilizes at the recommended float voltage. - Check the battery terminal voltage periodically during the first few weeks of operation (also check a lead-acid battery with a hydrometer). Readjust the float charge rate if necessary. #### **AC VOLTAGE SENSORS** Voltage sensors can be used for either undervoltage or overvoltage sensing on line side, or undervoltage sensing on generator side. Range of the settings is from 90 to 140 volts for a nominal 120-volt system. For higher voltage systems, the "PICK-UP VOLTAGE" knob readings are multiplied by the following multiplying factors. FIGURE 25. VOLTAGE SENSORS | VOLTAGE | MULTIPLYING FACTOR | | | |---------|--------------------|--|--| | 120 | 1.0 | | | | 208 | 1.73 | | | | 240 | 2.0 | | | | 480 | 4.0 | | | | 600 | 5.0 | | | #### **Undervoltage Sensor Settings** Use the following steps for setting undervoltage sensors. Your settings, however, might vary considerably from the example shown due to your particular application requirements. Use settings which give load protection and yet will avoid "nuisance" load transfers. - 1. Open the cabinet door. - 2. Move the operation selector switch to STOP, on engine control two-wire starting, or in cabinet for three-wire starting. - 3. Turn the PICK-UP VOLTAGE knob to the desired pick-up voltage, voltage at which load is transferred from the generator set to the normal power source. A setting of 108 volts, for example, gives a pick-up voltage which is 90 percent of the nominal voltage for a 120-volt system. - 4. Turn the % DROP-OUT DIFFERENTIAL knob to the desired percent deviation below the pick-up voltage. This setting determines the voltage at which load is transferred from the normal power source to the generator set. A setting of 15 percent, for example, would give a 16-volt differential from 108 volts (pick-up voltage from Step 3). Drop-out voltage is then pick-up voltage minus the differential voltage, 108 - 16 = 92 volts. - 5. Move the operation selector switch on the engine control to REMOTE for two-wire starting or to - NORMAL for three-wire starting, whichever applies. - 6. Close the cabinet door. #### **Overvoltage Sensor Settings** Use the following steps for setting overvoltage sensors. Your settings, however, might vary considerably from the example shown due to your particular application requirements. Use settings which give load protection and yet will avoid "nuisance" load transfers. - 1. Open the cabinet door. - 2. Move the operation selector switch to STOP, on engine control for two-wire starting, or in cabinet for three-wire starting. - 3. Turn the PICK-UP VOLTAGE knob to the desired pick-up voltage, voltage at which load is transferred from the normal power source to the generator set. A setting of 135 volts, for example, gives a pick-up voltage which is 113 percent of the nominal voltage for a 120-volt system. - 4. Turn the DROP-OUT DIFFERENTIAL knob to the desired percent deviation below the pick-up voltage. This setting determines the voltage at which load is transferred from the generator set to the normal power source. A setting of 5 percent, for example, would give a 7-volt differential from 135 volts (pick-up voltage from Step 3). Drop-out voltage is then 135 7 = 128 volts. - Move the operation selector switch on the engine control to REMOTE for two-wire starting, or to NORMAL for three-wire starting, whichever applies. - 6. Close the cabinet door. #### PROGRAMMED TRANSITION To change the setting of the time delay relay for programmed transition, use the following procedure. - 1. Open cabinet of Series OT transfer switch. - Move the operation selector switch to "STOP" (on control accessory panel in cabinet for three-wire starting, on engine control panel for two-wire starting) and disconnect the generator set starting battery. 3. Remove AC line power to the transfer switch. WARNING Be sure to move the operation selector switch to "STOP," disconnect starting battery, and remove AC line power before attempting adjustments. Otherwise, the automatic transfer switch presents a serious shock hazard. - 4. With automatic transfer switches, remove the twist-lock disconnect plug and open the control accessory panel. - 5. Locate the time delay relay (shown following) in the rear of the cabinet on the
transfer switch base assembly. - Turn the knob clockwise to increase delay (increments marked on knob), counterclockwise to decrease time delay. - With automatic transfer switches, close the control accessory panel and reconnect the twist-lock disconnect plug. - 8. Restore AC line power to the transfer switch. - Move the operation selector switch to "NORMAL" (in cabinet for three-wire starting) or "RMT" (on engine control for two-wire starting), whichever applies. - 10. Reconnect the generator set starting battery. - 11. Close the OT transfer switch cabinet door. FIGURE 26. PROGRAMMED TRANSITION TIME DELAY RELAY ### **TROUBLESHOOTING** #### POWER OUTAGE OCCURS, BUT GENERATOR SET DOES NOT START - 1. Check for overcrank condition. - 2. Two-wire starting only: Check position of operation selector switch on engine. Should be at "RMT." - 3. Check position of operation selector switch in cabinet. Should be at "NORMAL." - 4. Check generator set. Start with start-stop switch on generator set. If it does not crank, check starting batteries. If it cranks but does not start, check fuel supply. #### GENERATOR SET STARTS DURING NORMAL SERVICE - 1. Two-wire starting only: Check position of operation selector switch on engine control. Should be at "RMT." - 2. Check position of operation selector switch in cabinet. Should be at "NORMAL." - 3. Check if exerciser clock is turned to exercise period. - 4. Check to see if control panel disconnect plug is inserted into receptacle. - 5. Check voltage sensor settings (if equipped). If settings are okay, starting may be due to momentary voltage dips. Pick-up voltage settings may have to be reduced. #### GENERATOR SET DOES NOT EXERCISE - 1. Two-wire starting only: Check position of operation selector switch on engine control. Should be at "RMT." - 2. Check position of operation selector switch in cabinet. Should be at "NORMAL." - 3. Check exerciser clock to see if it is set correctly and running. - 4. Check generator set. Start with start-stop switch on generator set. If it does not crank, check starting batteries. If it cranks but does not start, check fuel supply. #### GENERATOR SET STARTS BUT DOES NOT ASSUME LOAD - 1. Check output voltage of the generator set. - 2. Check generator-side undervoltage sensor (if equipped) pick-up voltage setting. Setting in most cases should be at 100 volts (200 for 240-volt systems). - 3. Check position of motor disconnect switch. Should be up. # NO TRANSFER OF LOAD TO COMMERCIAL POWER FROM GENERATOR SET - 1. Check disconnect plug in control accessory panel. Must be connected into receptacle. - Check retransfer time delay (if used) to see if time delay is still operating. See OPERATION section. - 3. If automatic transfer switch has battery charging feature, check battery charging fuse. Replace if necessary with correct fuse. - 4. Check position of motor disconnect switch. Should be up. - 5. Manually initiate retransfer by operating retransfer selector switch and push to retransfer switch (if equipped). - 6. Check line voltage to make sure it is above setting of voltage sensor (if equipped). - 7. Stop generator set with start-stop switch. When generator set stops, the transfer switch will transfer the load to the normal power line if voltage is normal. # GENERATOR SET CONTINUES TO RUN AFTER RETRANSFER OF LOAD TO COMMERCIAL POWER Start-stop time delay may be defective. Stop generator set with start stop switch. #### **BATTERY CHARGER FAILS TO CHARGE** Check battery charger fuse F1 in control accessory panel (if equipped with charger). Replace if necessary with correct fuse. #### **BATTERY LOSES EXCESS WATER** Battery charger float voltage may be too high (if equipped with charger). See ADJUSTMENTS section. #### **BATTERY LOSES CHARGE** Charge float voltage may be set too low (if equipped with charger). See ADJUSTMENTS section. ### PARTS AND SERVICE INFORMATION This Series OT transfer switch is custom engineered and specially constructed. Because of the individuality of each automatic transfer switch, contact the dealer from whom you purchased this equipment for service and parts. Parts catalogs are available through your Onan distributor/dealer. Remember to give the complete model and serial number when requesting service or parts information. The wiring diagrams furnished with your Series OT transfer switch should be kept with your instruction manual in the "pocket" inside the cabinet. All shipments made are complete. Shipments are properly packed and in good order when delivered to the transportation company. Any claim for loss or danage in transit should be filed promptly against the transportation company making the delivery.